Platinum isotopes in iron meteorites: galactic cosmic ray effects and nucleosynthetic homogeneity in the p-process isotope 190Pt and the other Platinum isotopes

Alison C. Hunt, Mattias Ek, Maria Schönbächler
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2017.05.026]
Institute of Geochemistry and Petrology, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
Copyright Elsevier

Platinum isotopes are sensitive to the effects of galactic cosmic rays (GCR), which can alter isotope ratios and mask nucleosynthetic isotope variations. Platinum also features one p-process isotope, 190Pt, which is very low abundance and therefore challenging to analyse. Platinum-190 is relevant for early solar-system chronology because of its decay to 186Os. Here, we present new Pt isotope data for five iron meteorite groups (IAB, IIAB, IID, IIIAB and IVA), including high-precision measurements of 190Pt for the IAB, IIAB and IIIAB irons, determined by multi-collector ICPMS. New data are in good agreement with previous studies and display correlations between different Pt isotopes. The slopes of these correlations are well-reproduced by the available GCR models. We report Pt isotope ratios for the IID meteorite Carbo that are consistently higher than the predicted effects from the GCR model. This suggests that the model predictions do not fully account for all the GCR effects on Pt isotopes, but also that the pre-atmospheric radii and exposure times calculated for Carbo may be incorrect. Despite this, the good agreement of relative effects in Pt isotopes with the predicted GCR trends confirms that Pt isotopes are a useful in-situ neutron dosimeter. Once GCR effects are accounted for, our new dataset reveals s- and r-process homogeneity between the iron meteorite groups studied here and the Earth. New 190Pt data for the IAB, IIAB and IIIAB iron meteorites indicate the absence of GCR effects and homogeneity in the p-process isotope between these groups and the Earth. This corresponds well with results from other heavy p-process isotopes and suggests their homogenous distribution in the inner solar system, although it does not exclude that potential p-process isotope variations are too diluted to be currently detectable.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s