The Allende multicompound chondrule (ACC)—Chondrule formation in a local super-dense region of the early solar system

1Addi Bischoff, 2Gerhard Wurm, 3Marc Chaussidon, 1Marian Horstmann, 1Knut Metzler, 4Mona Weyrauch, 1Julia Weinauer
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12833]
1Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
2Fakultät für Physik, Universität Duisburg-Essen, Duisburg, Germany
3Institut de Physique du Globe, Sorbonne Paris Cité, UMR CNRS 7154, Université Paris Diderot, Paris Cedex 05, France
4Institut für Mineralogie, Leibniz-Universität Hannover, Hannover, Germany
Published by arrangement with John Wiley & Sons

In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine-rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O-poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral-chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer-sized, and super-dense chondrule-forming regions with extremely high solid-to-gas mass ratios of 1000 or more.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s