A high spatial resolution synchrotron Mössbauer study of the Tazewell IIICD and Esquel pallasite meteorites

1Roberts Blukis, 2Rudolf Rüffer, 2Aleksandr I. Chumakov, 1Richard J. Harrison
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12841]
1Department of Earth Sciences, University of Cambridge, Cambridge, UK
2European Synchrotron Radiation Facility, Grenoble, France
Published by Arrangement with John Wiley & Sons

Metallic phases in the Tazewell IIICD iron and Esquel pallasite meteorites were examined using 57Fe synchrotron Mössbauer spectroscopy. Spatial resolution of ~10–20 μm was achieved, together with high throughput, enabling individual spectra to be recorded in less than 1 h. Spectra were recorded every 5–10 μm, allowing phase fractions and hyperfine parameters to be traced along transects of key microstructural features. The main focus of the study was the transitional region between kamacite and plessite, known as the “cloudy zone.” Results confirm the presence of tetrataenite and antitaenite in the cloudy zone as its only components. However, both phases were also found in plessite, indicating that antitaenite is not restricted exclusively to the cloudy zone, as previously thought. The confirmation of paramagnetic antitaenite as the matrix phase of the cloudy zone contrasts with recent observations of a ferromagnetic matrix phase using X-ray photoemission electron spectroscopy. Possible explanations for the different results seen using these techniques are proposed.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s