Mineralogy and chemistry of San Carlos high-alkali basalts: Analyses of alteration with application for Mars exploration

1,2Bryné A. Hadnott, 2,3Bethany L. Ehlmann, 1Bradley L. Jolliff
American Mineralogist 102, 284-301 Link to Article [https://doi.org/10.2138/am-2017-5608]
1Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63105, U.S.A.
2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, U.S.A.
4Department of Earth and Atmospheric Sciences, Room 414 Spaces Sciences Building, Cornell University, 122 Garden Avenue, Ithaca, New York 14853, U.S.A.
Copyright: The Mineralogical Society of America

The discovery of Fe, Mg, and Al phyllosilicates on Mars using visible and short-wave infrared (VSWIR) spectroscopy from orbit indicates aqueous alteration of basaltic rocks. Analyses at Gusev Crater by the Spirit rover and Gale Crater by the Curiosity rover have discovered alkaline basaltic rocks. In this work, multiple methods—VSWIR spectroscopy, X-ray diffraction (XRD), and chemical analyses—were used to study a suite of alkaline basalts from San Carlos, Arizona, which have been altered by water in an oxidative, semi-arid environment. As an analog for the weathering of alkaline basaltic rocks on Mars, a suite of rocks visually identified to have different degrees of alteration were characterized to understand the spectral, mineralogical, and chemical trends in alteration as sensed by multiple techniques. Samples with strong 1.9 μm H2O-related absorptions in VSWIR commonly exhibited absorption bands at 1.4, 2.2, and/or 2.3 μm, indicating the presence of clay minerals or silica as well as features at 0.5–0.9 μm indicative of ferric iron oxides. Primary mineralogy for all samples, as determined by point analyses with the microprobe and XRD, consisted of olivine, plagioclase, nepheline, augite, and titanomagnetite. Compositional imaging and spot analyses with the microprobe revealed distinct alteration textures and phases, suggesting weathering pathways involving the oxidation of iron in olivine and primary Fe2+ oxides to form Fe3+ oxides as well as the formation of aluminum phyllosilicates and magnesium phyllosilicates from feldspars and olivines, respectively, while pyroxene remained relatively unaltered. Bivariate plots of major oxides both from bulk-chemical analysis and microprobe measurements also revealed trends in alkali and silica depletion and calcium enrichment, but there was little chemical fractionation in most of the major oxides. The strength of the 1.9 μm H2O absorption, loss on ignition, and depletion in silica and sodium, correlated with increasing alteration. The data sets provide an analog for understanding possible weathering pathways in martian alkaline basalts and thresholds for the detection of aqueous alteration in multiple data sets.

Nuclear-blast induced nanotextures in quartz and zircon within Trinitite

1Aaron J. Lussier, 2Sergei Rouvimov, 1,3Peter C. Burns, 1Antonio Simonetti
American Mineralogist 102, 445-460 Link to Article [https://doi.org/10.2138/am-2017-5739]
1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
2Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, U.S.A.
3Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
Copyright: The Mineralogical Society of America

The Half Dome Granodiorite, Yosemite National Park, California, is recognized in the field by euhedral, fresh-looking, black hornblende phenocrysts up to 2 cm in length. This variety of granodiorite typifies intermediate-age hornblende-phyric units of Cretaceous nested plutonic suites in the Sierra Nevada batholith. Although only inclusions of feldspar are evident in hand samples, the phenocrysts are riddled with up to 50% inclusions of every major mineral found in the host granodiorite plus metamorphic minerals formed during cooling. Amphibole compositions within single phenocrysts vary from actinolite with less than 1 wt% Al2O3 to magnesiohornblende with over 8 wt%. Elemental zoning within the amphibole is highly irregular on the micrometer scale, showing patches and polygonal zones with dramatically different compositions separated by sharp to gradual transitions. The chemical compositions of entire phenocrysts are equivalent to hornblende plus a small proportion of biotite, suggesting that the non-biotite inclusions are the result of metamorphism of the phenocrysts. Backscattered electron imaging shows evidence of brecciation that may have been the result of volume changes as hornblende was converted to actinolite. Pressure calculations using the Al-in-hornblende barometer show unreasonably wide variations on the micrometer scale that cannot have been produced by temperature or pressure variations during crystallization. These hornblende phenocrysts would thus be unsuitable for geobarometry, and caution must be used to avoid similarly zoned phenocrysts in the application of the Al-in-hornblende geobarometer.

The mineralogy, petrology, and composition of anomalous eucrite Emmaville

1T. J. Barrett, 2D. W. Mittlefehldt, 1R. C. Greenwood, 1B. L. A. Charlier, 1S. J. Hammond, 2,3D. K. Ross, 1M. Anand, 1I. A. Franchi, 1F. A. J. Abernethy, 1M. M. Grady
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12818]
1School of Physical Sciences, The Open University, Milton Keynes, UK
2Astromaterials Research Office, NASA Johnson Space Center, Houston, Texas, USA
3UTEP and Jacobs Technology, Houston, Texas, USA
4Department of Earth Sciences, Natural History Museum, London, UK
Published by arrangement with John Wiley & Sons

The Emmaville eucrite is a relatively poorly studied basaltic achondrite with an anomalous oxygen isotope signature. In this study, we report comprehensive mineralogical, petrographic, and geochemical data from Emmaville in order to understand its petrogenesis and relationship with the basaltic eucrites. Emmaville is an unusually fine-grained, hornfelsic-textured metabasalt with pervasive impact melt veins and mineral compositions similar to those of typical basaltic eucrites. The major and trace element bulk composition of Emmaville is also typical of a basaltic eucrite. Three separated individual lithologies were also analyzed for O isotopes; a dark gray fraction (E1), a shocked lithology (E2), and a lighter gray portion (E3). Fractions E1 and E2 shared similar O isotope compositions to the bulk sample (E-B), whereas the lighter gray portion (E3) is slightly elevated in Δ17O and significantly elevated in δ18O compared to bulk. No evidence for any exogenous material is observed in the thin sections, coupled with the striking compositional similarity to typical basaltic eucrites, appears to preclude a simple impact-mixing hypothesis. The O-isotopes of Emmaville are similar to those of Bunburra Rockhole, A-881394, and EET 92023, and thus distinct from the majority of the HEDs, despite having similarities in petrology, mineral, and bulk compositions. It would, therefore, seem plausible that all four of these samples are derived from a single HED-like parent body that is isotopically distinct from that of the HEDs (Vesta) but similar in composition.