Evidence for a spatially extensive hydrothermal system at the Ries impact structure, Germany

1,2H. M. Sapers, 1,2,3G. R. Osinski, 1,2R. L. Flemming, 1E. Buitenhuis, 1N. R. Banerjee, 1,2L. L. Tornabene, 1S. Blain, 1J. Hainge
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12796]
1Department of Earth Sciences, University of Western Ontario, London, Ontario, Canada
2Centre for Planetary Science and Exploration, University of Western Ontario, London, Ontario, Canada
3Department of Physics & Astronomy, University of Western Ontario, London, Ontario, Canada
Published by arrangement with John Wiley & Sons

The ~15 Ma, 26 km diameter Ries impact structure in south-central Germany was one of the first terrestrial impact structures where evidence of impact-associated hydrothermal alteration was recognized. Previous studies suggested that pervasive, high-temperature hydrothermal activity was restricted to the area within the “inner ring” (i.e., the crater-fill impactite units). Here we present mineralogical evidence for localized hydrothermal activity in the ejecta beyond the crater rim in two previously unstudied settings: a pervasively altered lens of suevite ejecta directly overlying the Bunte Breccia at the Aumühle quarry; and suevite ejecta at depth overlain by ~20 m of lacustrine sediments sampled by the Wörnitzostheim 1965 drill core. A comprehensive set of X-ray diffraction analyses indicates five distinct alteration regimes (1) surficial ambient weathering characterized by smectite and a minor illitic component; (2) locally restricted hydrothermal activity characterized by an illitic component and minor smectite; (3) hydrothermal activity at depth characterized by smectite, a minor illitic component, and calcite; (4) hydrothermal activity at depth characterized by smectite, a minor illitic component, calcite, zeolites, and clinochlore; and (5) pervasive hydrothermal activity at depth characterized by smectite, a minor illitic component, and minor clinochlore. These data spatially extend the Ries postimpact hydrothermal system suggesting a much more extensive, complex, and dynamic system than previously thought. Constraining the mineralogical alteration regimes at the Ries impact structure may also further our understanding of impact-associated phyllosilicate formation on Mars with implications for climate models and habitability.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s