Sensitivities of Earth’s core and mantle compositions to accretion and differentiation processes

1,2,3Rebecca A. Fischer, 1Andrew J. Campbell, 1Fred J. Ciesla
Earth and Planetary Science Letters (in Press) Link to Article []
1University of Chicago, Department of the Geophysical Sciences, 5734 S Ellis Ave, Chicago, IL 60637, USA
2National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 119, Washington, DC 20013-7012, USA
3University of California Santa Cruz, Department of Earth and Planetary Sciences, 1156 High St, Santa Cruz, CA 95064, USA
Copyright Elsevier

The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal–silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth’s core. Here we present modeling of Earth’s core formation, combining results of 100 N-body accretion simulations with high pressure–temperature metal–silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth’s mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core’s light element budget may be dominated by these elements, and is consistent with ≤1–2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth’s core composition.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s