RADIOACTIVE IRON RAIN: TRANSPORTING 60Fe IN SUPERNOVA DUST TO THE OCEAN FLOOR

1Brian J. Fry, 1Brian D. Fields, 2John R. Ellis
Astrophysical Journal 827, 48 Link to Article [http://dx.doi.org/10.3847/0004-637X/827/1/48]
1Department of Astronomy, University of Illinois, Urbana, IL 61801, USA
2Theoretical Physics and Cosmology Group, Department of Physics, King’s College London, London WC2R 2LS, UK; Theory Department, CERN, CH-1211 Geneva 23, Switzerland

Several searches have found evidence of ${}^{60}{\rm{Fe}}$ deposition, presumably from a near-Earth supernova (SN), with concentrations that vary in different locations on Earth. This paper examines various influences on the path of interstellar dust carrying ${}^{60}{\rm{Fe}}$ from an SN through the heliosphere, with the aim of estimating the final global distribution on the ocean floor. We study the influences of magnetic fields, angle of arrival, wind, and ocean cycling of SN material on the concentrations at different locations. We find that the passage of SN material through the mesosphere/lower thermosphere has the greatest influence on the final global distribution, with ocean cycling causing lesser alteration as the SN material sinks to the ocean floor. SN distance estimates in previous works that assumed a uniform distribution are a good approximation. Including the effects on surface distributions, we estimate a distance of ${46}_{-6}^{+10}$ pc for an $8\mbox{–}10\ {M}_{\odot }$ SN progenitor. This is consistent with an SN occurring within the Tuc-Hor stellar group ~2.8 Myr ago, with SN material arriving on Earth ~2.2 Myr ago. We note that the SN dust retains directional information to within 1◦ through its arrival in the inner solar system, so that SN debris deposition on inert bodies such as the Moon will be anisotropic, and thus could in principle be used to infer directional information. In particular, we predict that existing lunar samples should show measurable ${}^{60}{\rm{Fe}}$ differences.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s