In situ oxygen isotope compositions in olivines of different types of cosmic spherules: an assessment of relationships to chondritic particles

1N.G. Rudraswami, 1M. Shyam Prasad, 2R.H. Jones, 3K. Nagashima
Geochimica et Cosmochimica Acta (in Press)   Link to Article [http://dx.doi.org/10.1016/j.gca.2016.08.024]
1National Institute of Oceanography (Council of Scientific and Industrial Research), Dona Paula, Goa 403004, India
2School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
3Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, 1680 East-West-Road, Honolulu, HI 96822, USA
Copyright Elsevier

Cosmic spherules collected from deep sea sediments of the Indian Ocean having different textures such as scoriaceous (4), relict-bearing (16), porphyritic (35) and barred olivine (2) were investigated for petrography, as well as high precision oxygen isotopic studies on olivine grains using secondary ion mass spectrometry (SIMS). The oxide FeO/MgO ratios of large olivines (> 20μm) in cosmic spherules have low values similar to those seen in the olivines of carbonaceous chondrite chondrules, rather than matching the compositions of matrix. The oxygen isotope compositions of olivines in cosmic spherules have a wide range of δ18O, δ17O and Δ17O values as follows: −9 to 40‰, −13 to 22‰ and -11 to 6‰. Our results suggest that the oxygen isotope compositions of the scoriaceous, relict-bearing, porphyritic and barred spherules show provenance related to the carbonaceous (CM, CV, CO and CR) chondrites. The different types of spherules that has experienced varied atmospheric heating during entry has not significantly altered the Δ17O values. However, one of the relict-bearing spherules with a large relict grain has Δ17O = 5.7‰, suggesting that it is derived from 16O-poor material that is not recognized in the meteorite record. A majority of the spherules have Δ17O ranging from −4 to −2‰, similar to values in chondrules from carbonaceous chondrites, signifying that chondrules of carbonaceous chondrites are the major contributors to the flux of micrometeorites, with an insignificant fraction derived from ordinary chondrites. Furthermore, barred spherule data shows that during atmospheric entry an increase in ∼10‰ of δ18O value surges Δ17O value by ∼1‰.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s