Do lunar and meteoritic archives record temporal variations in the composition of solar wind noble gases and nitrogen? A reassessment in the light of Genesis data

1Rainer Wieler
Chemie der Erde (in Press) Link to Article [doi:10.1016/j.chemer.2016.06.001]
1ETH Zurich, Department of Earth Sciences, Clausiusstrasse 25, CH-8092 Zurich, Switzerland
Copyright Elsevier

Since about half a century samples from the lunar and asteroidal regoliths been used to derive information about elemental and isotopic composition and other properties of the present and past solar wind, predominantly for the noble gases and nitrogen. Secular changes of several important compositional parameters in the solar wind were proposed, as was a likely secular decrease of the solar wind flux. In 2004 NASA’s Genesis mission returned samples which had been exposed to the solar wind for almost 2.5 years. Their analyses resulted in an unprecendented accuracy for the isotopic and elemental composition of several elements in the solar wind, including noble gases, O and N. The Genesis data therefore also allow to re-evaluate the lunar and meteorite data, which is done here. In particular, claims for long-term changes of solar wind composition are reviewed.

Outermost grain layers from relatively recently irradiated lunar regolith samples conserve the true isotopic ratios of implanted solar wind species. This conclusion had been made before Genesis based on the agreement of He and Ne isotopic data measured in the aluminum foils exposed to the solar wind on the Moon during the Apollo missions with data obtained in the first gas release fractions of stepwise in-vacuo etch experiments. Genesis data allowed to strengthen this conclusion and to extend it to all five noble gases. Minor variations in the isotopic compositions of implanted solar noble gases between relatively recently irradiated samples (<100 Ma) and samples irradiated billions of years ago are very likely the result of isotopic fractionation processes that happened after trapping of the gases rather than indicative of true secular changes in the solar wind composition. This is particularly important for the 3He/4He ratio, whose constancy over billions of years indicates that hardly any 3He produced as transient product of the pp-chains has been mixed from the solar interior into its outer convective zone. The He isotopic composition measured in the present-day solar wind therefore is identical to the (D + 3He)/4He ratio at the start of the suns’s main sequence phase and hence can be used to determine the protosolar D/H ratio.

Genesis settled the long-standing controversy on the isotopic composition of nitrogen in lunar regolith samples. The 15N/14N ratio in the solar wind as measured by Genesis is lower than in any lunar sample. This proves that nitrogen in regolith samples is dominated by non-solar sources. A postulated secular increase of 15N/14N by some 30% over the past few Ga is not tenable any longer. Genesis also provided accurate data on the isotopic composition of oxygen in the solar wind, invaluable for cosmochemisty. These data superseded but essentially confirmed one value – and disproved a second one – derived from lunar regolith samples shortly prior to Genesis.

Genesis also confirmed prior conclusions that lunar regolith samples essentially conserve the true elemental ratios of the heavy noble gases in the solar wind (Ar/Kr, Kr/Xe). Several secular changes of elemental abundances of noble gases in the solar wind had been proposed based on lunar and meteoritic data. I argue here that lunar data – in concert with Genesis – provide convincing evidence only for a long-term decrease of the Kr/Xe ratio by almost a factor of two over the past several Ga. It appears that the enhancement of abundances of elements with a low first ionisation potential in the solar wind (FIP effect) changed with time.

Finally, Genesis allows a somewhat improved comparison of the present-day flux of solar wind Kr and Xe with the total amount of heavy solar wind noble gases in the lunar regolith. It remains unclear whether the past solar wind flux has been several times higher on average than it is today.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s