The diversity, classification, and formation of the CM chondrite group: A review

1Makoto Kimura, 2,3Michael K. Weisberg, 4Richard C. Greenwood, 1,5Akira Yamaguchi
Geochemistry (Chemie der Erde) 85, 126343 Link to Article [https://doi.org/10.1016/j.chemer.2025.126343]
1National Institute of Polar Research, 10-3 Midoricho, Tachikawa, Tokyo, 190-8513, Japan
2Kingsborough College and Graduate Center of the City University of New York, USA
3American Museum of Natural History, New York, USA
4Planetary and Space Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom
5Department of Polar Science, the Graduate University for Advanced Studies, SOKENDAI, 10-3 Midoricho, Tachikawa, Tokyo, 190-8518, Japan
Copyright Elsevier

In this paper, we examine the diverse features of CM (Mighei-type) and related carbonaceous chondrites, including their petrologic classification, secondary heating, brecciation, and we explore anomalous CM-like chondrites. CM chondrites experienced varying degrees of aqueous alteration, resulting in a range of petrologic subtypes from 3.0 to 2.0. The most abundant subtypes are 2.3–2.0, which may reflect melting of significant amounts of ice, resulting in the formation of the heavily altered CM chondrites in the inner regions of the parent body. Additionally, some CM and related chondrites have undergone secondary heating after aqueous alteration. The source of heat for these chondrites is still uncertain, but impacts are the most likely the cause due to the evidence for a short duration of heating. CM chondrites are mainly genomict breccias and contain clasts of various petrologic grade and degree of heating, though some CMs contain xenolithic clasts. Highly recrystallized clasts are particularly important, as they might have formed in the interior, hotter regions of the CM parent body. Subsequently, these clasts may have been mixed with other typical CM lithologies due to impact events. CM chondrite fragments are commonly found in other meteorites, such as HED meteorites and ordinary chondrites. This indicates a widespread distribution of CM chondrite fragments in the main asteroid belt, with incorporation into other meteorites taking place significantly later than chondrule formation. There have been numerous descriptions of anomalous CM or related chondrites. We tentatively classify these anomalous CMs into four categories: highly 16O-rich, medium 16O-rich, an unusual mineral group, and others. However, the processes involved in the formation of these anomalous chondrites and their relationships to the more typical CMs remain unclear, as detailed documentation of most of the anomalous CMs is currently lacking. CM chondrites primarily consist of chondrules, refractory inclusions, opaque minerals, and a matrix material, similar to other C chondrites. The petrographic and bulk chemical features of CMs are most similar to CO chondrites. However, CM and CO chondrites did not originate from a single parent body. CM chondrites provide valuable information about the conditions and processes that operated in the outer region of the early solar system.

Assessing the evidence for active volcanism on Venus: current limitations and prospects for future investigations

1Justin R. Filiberto et al. (>10)
Geochemistry (Chemie der Erde)(in Press) Open Access Link to Article [https://doi.org/10.1016/j.chemer.2025.126316]
1Astromaterials Research and Exploration Science (ARES) Division (XI), NASA Johnson Space Center, Houston, TX 77059, USA
Copyright Elsevier

One of the biggest unknowns about Venus is how volcanically active it is today. Venus has a similar size and density to Earth, suggesting it may have a comparable composition, and therefore it is expected to be volcanically active; however, exploring Venus and confirming current volcanic activity is difficult because of the thick omnipresent optically opaque clouds that hamper traditional observations of the lower atmosphere and surface. Further, surface conditions make long-lived missions challenging. Despite the difficulty, there have been tantalizing hints of currently active or very recent volcanism. Here, we review what is known about active volcanism, point out gaps in knowledge to be addressed, and highlight techniques and approaches that need to be developed before the new decade of Venus exploration. It is crucial to constrain the activity and rate of volcanism today and through time to begin to understand the geodynamic state of the planet.
We find that the combination of all evidence strongly indicates that Venus is volcanically active today. The best evidence for active volcanism comes from combining data sets and approaches – specifically at Idunn Mons, Maat Mons, and Aramaiti Corona – in contrast to those from a single study or data set alone. Considering the evidence for activity, observations do not favor so-called “catastrophic” models of resurfacing, instead they are better represented by ongoing regional scale events. To reliably detect and characterize active or recent effusive basaltic volcanism new missions must collect high-resolution imaging, repeat observations, radar polarimetry, evidence of outgassing, and high-resolution topographical data that provide insights into surface changes over time. The ability to capture and interpret these data is vital for understanding Venus’s geological activity, particularly in regions where volcanic processes are suspected to be ongoing.