1R. Keerthana, 1R. Annadurai, 2K.N. Kusuma
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2025.116871]
1Department of Civil Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
2Department of Earth Sciences, Pondicherry University, Puducherry 605 014, India
Copyright Elsevier
This study investigates the morphology, mineralogy, and chronology of the Briggs crater (37 km diameter), situated west of the Oceanus Procellarum, employing high-resolution data from recent lunar missions. Lunar Reconnaissance Orbiter (LRO) images, Terrain Mapping Camera (TMC) Ortho images, and Digital Elevation Models (DEMs) from both the Chandrayaan-2 and Kaguya were employed to study the morphology of the crater. The morphological investigation identified distinct features in Briggs Crater, including a well-preserved crater rim, terraced walls, a convex floor indicative of subsurface uplift, an uplifted central peak, mounds, and prominent NE-SW and N-S trending concentric and radial fractures. Additionally, a fresh impact crater and localized slumping along the crater walls suggest ongoing surface modifications. Briggs Crater exhibits characteristics of a Class-2 Floor-Fractured Crater (FFC), including an uplifted floor and prominent concentric fractures, consistent with previously established classifications. The presence of radial and concentric fractures on the Briggs Crater floor suggests a combination of brittle and ductile deformation. Variations in fracture dimensions indicate differential stress distribution during floor uplift, likely influenced by subsurface magmatic intrusion or impact-induced processes. Integrated Band Depth (IBD) and Mineral indices-based color composite images were generated using M3 datasets to better understand mineralogy. These images enable the extraction of spectral signatures for mineralogical investigation and highlight the diversity of lithological composition. Spectral absorption analysis, IBD mapping, and mineral indices collectively confirm that the central peak exposes fresh High-Calcium Pyroxene (HCP) from deeper crustal levels, while the floor, rim, wall, and ejecta show weaker, mixed, and weathered pyroxene signatures. Integrating morphology and mineralogy with Crater Size-Frequency Distributions (CSFD)-based chronology, it has been suggested that Briggs Crater formed during the late Imbrian period (3.6 Ga). The N-S trending concentric fractures on the Briggs crater floor likely represent tectonic or magmatic activity that occurred between ~310 Ma and ~ 270 Ma during the Eratosthenian period, significantly after the initial crater formation.