1,2S. Iannini Lelarge,2,3M. Masotta,2,3L. Folco,4T. Ubide,2,5M.D. Suttle,6,7L. Pittarello
Geochemistry (Chemie der Erde) 88, 126293 Link to Article [https://doi.org/10.1016/j.chemer.2025.126293]
1Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, Via Moruzzi 1, 56124 Pisa, Italy
2Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
3CISUP, Centro per l’Integrazione della Strumentazione Università di Pisa, Lungarno Pacinotti 43, Pisa 56126, Italy
4School of Earth and Environmental Sciences, The University of Queensland, Brisbane 4102, QLD, Australia
5School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
6Naturhistorisches Museum, Mineralogisch-Petrographische Abteilung, Burgring 7, 1010 Vienna, Austria
7Department of Lithospheric Research, University of Vienna, Josef-Holaubek-Platz 2,1090 Vienna, Austria
Copyright Elsevier
We conducted high-pressure (1 GPa) melting experiments (1100–1400 °C) on the equilibrated ordinary chondrite DAV 01001 (L6) to investigate partial melting scenarios of planetary embryo in the early solar system. At 1100 °C, no melting of the silicate phase is observed, and the initial chondritic texture is preserved, but the metallic-sulphidic phases formed two immiscible Fe–Ni and S-rich liquids. Melting of silicate minerals began at 1200 °C, progressing from plagioclase to high-Ca and low-Ca pyroxene and olivine. As melting advanced, the formation of new olivine and low-Ca pyroxene resulted in the production of trachy-andesitic melt at 1200 °C, basaltic trachy-andesitic melt at 1300 °C, and andesitic melt at 1400 °C. These silicate melts have chemical similarities with some anomalous achondrites (e.g., GRA 60128/9). At the same time, minerals of new formation resemble those of primitive achondrites (e.g., brachinites, ureilites, IAB silicate inclusions, acapulcoites and lodranites). The rapid mineral-liquid re-equilibration suggests that basaltic liquids can form only above 1400 °C and that relatively high degrees of melting (>20 %) and crystallisation are necessary to explain the observed diversity of achondritic lithologies. These findings suggest that partial melting and recrystallization processes within planetary embryos could have played a critical role in the early solar system, contributing to the early differentiation of planetary bodies and the diversity of achondritic lithologies, including (but not limited to) alkali-rich achondrites.