Marwane Mokhtari, Bernard Bourdon
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2025.116801]
Laboratoire de Géologie de Lyon, Terre Planètes Environnement, ENS de Lyon, CNRS, Université Lyon 1. 46 Allée d’Italie, 69007 Lyon, France
Copyright Elsevier
Recent astronomical observations have shown that dust can get locally concentrated in protoplanetary disks, forming ring structures. The thermal processing of such regions could lead to dust evaporation and local enrichment of the solar gas in condensable elements. Previous studies focusing on major element behavior have shown that condensation of such dust-enriched gas could lead to the formation of a silicate melt with compositions resembling that of chondrules. However, previous studies focusing on dust-enriched environments were restricted to a limited set of elements. To study the mineralogical and chemical composition of condensates in these conditions, we have performed equilibrium calculations using the FactSage™ software for a dust-enriched solar gas. The calculations were done with dust-enrichment factors of 1 (solar composition), 10 and 100 at pressures ranging from 10−6 bar to 10−3 bar, for a CI-chondrite dust and a H-chondrite dust. The trace element condensation was accurately modelled with newly calculated activity coefficients in different solid and melt solutions. The available gas phase database was completed with new trace element species that are important to consider in oxidized conditions. The mineralogical sequence, melt composition and condensation temperature for all condensable elements were then quantified.
Our calculations show that the iron contents of olivine in equilibrium with a gas that is x100 enriched in CI-dust is consistent with that of amoeboid olivine aggregates and chondrules. Furthermore, our estimated temperature at which fayalite can form in these conditions is higher than what was previously proposed, enabling diffusion and homogenization of iron in olivine. The calculated composition of refractory metals for a x10 and x100 CI-dust enriched gas at 10−4 bar is consistent with the measured compositions of refractory metal nuggets. The possibility for these grains to have fractionated in an H2O ice-enriched gas can be ruled out as the calculated fractionation patterns in this case did not match the observed compositions.
Day: September 16, 2025
Trends in planetary science research in the Puna and Atacama Desert regions: Underrepresentation of local scientific institutions?
1A. Tavernier,2,3G. A. Pinto,4,5,6M. Valenzuela,1A. Garcia,1C. Ulloa,7R. Oses,8,9,10,11B. H. Foing
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13972]
1Instituto de Investigaciones Científicas y Tecnológicas, IDICTEC, Laboratorio de Investigacion de la Criosfera y Aguas, Universidad de Atacama, UDA, Copiapó, Chile
2Instituto de Investigación en Astronomía y Ciencias Planetarias, INCT, Universidad de Atacama, UDA, Copiapó, Chile
3Centre de Recherches Pétrographiques et Géochimiques, CRPG, Université de Lorraine, Nancy, France
4Departamento de Ciencias Geológicas, Universidad Católica del Norte, UCN, Antofagasta, Chile
5Millennium Institute of Astrophysics, MAS, Santiago, Chile
6Center for Excellence in Astrophysics and Associated Technologies, CATA, Santiago, Chile
7Centro Regional de Investigacion y Desarrollo Sustentable de Atacama, CRIDESAT, Universidad de Atacama, UDA, Copiapó, Chile
8Instituto de Investigación en Astronomía y Ciencias Planetarias, INCT, Universidad de Atacama, UDA, Copiapó, Chile
9International Lunar Exploration Working Group, ILEWG, EuroMoonMars, Noordwijk, The Netherlands
10Vrije Universiteit Amsterdam, VUA, Amsterdam, The Netherlands
11Universiteit Leiden, Leiden, The Netherlands
Published by arrangement with John Wiley & Sons
In 2019, while launching a multidisciplinary research project aimed at developing the Puna de Atacama region as a natural laboratory, investigators at the University of Atacama (Chile) conducted a bibliographic search identifying previously studied geographic points of the region and of potential interest for planetary science and astrobiology research. This preliminary work highlighted a significant absence of local institutional involvement in international publications. In light of this, a follow-up study was conducted to confirm or refute these first impressions, by comparing the search in two bibliographic databases: Web of Science and Scopus. The results show that almost 60% of the publications based directly on data from the Puna, the Altiplano, or the Atacama Desert with objectives related to planetary science or astrobiology do not include any local institutional partner (Argentina, Bolivia, Chile, and Peru). Indeed, and beyond the ethical questioning of international collaborations, Latin-American planetary science deserves a strategic structuring, networking, as well as a road map at national and continental scales, not only to enhance research, development, and innovation, but also to protect an exceptional natural heritage sampling extreme environmental niches on Earth. Examples of successful international collaborations such as the field of meteorites, terrestrial analogs, and space exploration in Chile or astrobiology in Mexico are given as illustrations and possible directions to follow to develop planetary science in South America. To promote appropriate scientific practices involving local researchers, possible responses at academic and institutional levels will eventually be discussed.
A comprehensive study of comet 67P/Churyumov-Gerasimenko in the 2021/2022 apparition. I. Photometry, spectroscopy, morphology
Vera Rosenbusha,b, et al. (>5)
Icarus (in Press) Open Access Link to Article [https://doi.org/10.1016/j.icarus.2025.116799]
aAstronomical Observatory of Taras Shevchenko National University of Kyiv, 3 Observatorna St., Kyiv 04053, Ukraine
Copyright Elsevier
The YORP effect for meter-sized asteroids
Conor J. Benson, Daniel J. Scheeres
Icarus (in Press) Open Access Link to Article [https://doi.org/10.1016/j.icarus.2025.116794]
University of Colorado Boulder, 3775 Discovery Drive, Boulder, CO 80303, USA
Copyright Elsevier