1Courtney Jean Rundhaug, 1Martin Schiller, 1Martin Bizzarro, 1,2Zhengbin Deng, 3,4,5Hermann Dario Bermúdez
Earth and Planetary Science Letters 670, 119599 Open Access Link to Article [https://doi.org/10.1016/j.epsl.2025.119599]
1Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K, Denmark
2Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
3Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
4Grupo de Investigación Paleoexplorer, 1400-37 Trexlertown Rd, PA 18062, USA
5Departamento de Geociencias, Universidad Nacional de Colombia, Bogotá 11001, Colombia
Copyright Elsevier
The Cretaceous-Paleogene boundary (KPB) represents a massive extinction event in Earth’s history, probably triggered by the Chicxulub asteroid impact ∼66 Ma. The event dispersed vast volumes of ejecta materials including exceptionally preserved impact spherules in the Gorgonilla Island KPB section. Previous work identified three populations of spherules at Gorgonilla: 1) ballistically transported molten spherules, 2) a mixture of molten and condensed spherules dispersed by the expansion of a high-temperature, turbulent cloud (the “pyrocloud”), and 3) tiny droplets condensed from the plume (the “fireball layer”). We determine the Mg, Fe, and Ca isotopic compositions of pristine spherules to better understand the evaporation and condensation thermodynamics within the pyrocloud. We detect enrichment in mass bias corrected µ48Ca and µ26Mg* isotope signatures from the terrestrial value corresponding to an impactor contribution of ∼17–25%, most likely from a CM or CO chondrite-like asteroid. The mass-dependent δ25Mg and δ56Fe compositions are generally light or unfractionated, suggesting incomplete recondensation as the pyrocloud cooled and expanded. Combined δ25Mg and δ56Fe signatures reveal decoupling of these isotope systems, likely due to differing condensation rates. Thus, we calculate a higher average condensation rate of Fe than Mg, reflecting the thermodynamic decoupling and more complete recondensation signatures of Fe in the pyrocloud vapor. While we uncover information about the evaporation and condensation thermodynamics in the pyrocloud, the exact formation mechanisms of the complete suite of spherules remain complex with some spherules potentially forming from multiple mechanisms, including recondensation and splash–melting.