1S.A. Singerling, 1F.E. Brenker, 1B. Tkalcec, 2S.S. Russell, 3T.J. Zega, 4T.J. McCoy, 3,4,5H.C. Connolly Jr., 31D.S. Lauretta
Geochimica et Cosmochimica Acta (in Press) Open Access Link to Article [https://doi.org/10.1016/j.gca.2025.06.028]
1Schwiete Cosmochemistry Laboratory, Goethe University, Frankfurt, Germany
2Planetary Materials Group, Natural History Museum, London, UK
3Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
4Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
5Department of Geology, Rowan University, Glassboro, NJ, USA
6Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY, USA
Copyright Elsevier
We describe nanoscale observations obtained via transmission electron microscopy of Na,Ca carbonates in OSIRIS-REx samples of asteroid Bennu. Four Na,Ca carbonate grains were observed (including the one briefly described in McCoy and Russell et al., 2025), ranging in size from 140 nm to 2.36 µm. The stoichiometry of the grains and electron diffraction data best match gaylussite (Na2Ca(CO3)2·5H2O) or pirssonite (Na2Ca(CO3)2·2H2O). The grains rapidly amorphized under the electron beam. We also found that the grains are reactive to the terrestrial atmosphere, with their compositions and textures changing over six months of storage in a standard desiccator. NaCl salts grew on the exteriors of the grains, and the compositions of the carbonates became richer in C, F, Cl, and Ca and poorer in O and Na
Neither gaylussite nor pirssonite have been observed in planetary materials other than samples from Bennu. On Earth, these phases occur in evaporites or shales from alkali lakes and, less commonly, as veins in alkaline igneous rocks. Thermodynamic modeling has shown that both phases require a low-temperature (<55 °C), Na-rich (>140 g/kg Na2CO3) brine, and their presence in the Bennu samples supports a model of salt formation on the parent body during syndepositional back-reaction of a briny fluid (McCoy and Russell et al., 2025). We argue that these minerals have not been previously observed owing either to their rare formation conditions or their susceptibility to degradation from sample preparation and analysis (e.g., electron/ion beam imaging), terrestrial weathering, and/or storage in a terrestrial environment. This study highlights the importance of collecting and carefully preserving pristine samples from planetary bodies.
Day: June 30, 2025
Origin of the metal in chondritic and achondritic lithologies of the Sierra Gorda 013 СBa-like chondrite
1Marina A. Ivanova,1Svetlana N. Teplyakova,1Cyril A. Lorenz,2Shuying Yang,2Munir Humayun
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.70005]
1Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow, Russia
2National High Magnetic Field Laboratory and Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, Florida, USA
Published by arrangement with John Wiley & Sons
Sierra Gorda 013 (SG 013) is an unusual CBa-like chondrite containing two texturally different, isotopically identical lithologies—chondritic (L1) and achondritic (L2), which should have a common origin. The metal globules of the L1 metal preserved the magmatic pattern of the siderophile element distribution that indicates they had a fractionated precursor. In this work, the trace element metal composition of lithology 2 was studied, and the revisited LA-ICP-MS data on the L1 metal was presented. Lithologies 1 and 2 have Ni and Co in the range of CB chondrites. The Ni-Co distribution in L1 and depletion in Cr of both lithologies with a negative Cr-Ni correlation are similar to that of the magmatic irons. Highly refractory siderophile element (HRSE) (W, Re, Os, Ir, Pt, Ru, Rh, and Mo) compositions of the L1 metal are highly fractionated relative to CI, but the L2 metal has a nearly uniform HRSE distribution similar to the depleted patterns of some HRSE-poor L1 metal compositions. Metal from both lithologies is depleted in volatile siderophile elements. In the L1 metal globules, the metal composition shows definite linear correlations of the HRSE elements versus Ni similar to those observed in many magmatic iron meteorites, distinct from those of the CH/CBb-zoned metal. Meanwhile, the L2 metal compositions are systematically plotted as limited clusters in the middle of the L1 trends. Based on a fractional crystallization (FC) model of the CR-like metal composition, it was shown that the distribution of siderophile elements in the metal globules of L1 can cover the full range of the fractional crystallization products of a metallic (Fe-Ni-S) liquid from the core of a differentiated body at S content 13 wt%. In contrast, the metal from L2 corresponds to a more limited range of fractional crystallization products and indicates a mixture of the fractionated metal with the primitive metal from the chondritic colliding body. Our results suggest that during a catastrophic impact event when the metallic core of a differentiated body was disrupted, the L1 lithology was quickly cooled in the impact plume, more reduced than that of CB chondrites and avoided equilibration with plume gas and preserved its fractionated HRSE patterns. The distribution of siderophile volatile elements and Au was likely overprinted by high-temperature processes of volatilization and recondensation to different degrees in the impact plume under disequilibrium conditions. The L2 metal probably avoided equilibration with the plume gas and was affected by thermal metamorphism up to 900°C in the SG 013 parent body, which possibly resulted in the higher W abundance compared to the L1 metal with a magmatic Ir-W trend due to the redox reactions with silicates under reducing conditions.