1,2Antonin Wargnier et al. (>10)
Icarus (in Press) Open Access Link to Article [https://doi.org/10.1016/j.icarus.2025.116611]
1LIRA, Observatoire de Paris, Université PSL, Sorbonne Université, Université de Paris-Cité, CY Cergy Paris Université, CNRS, 5 place Jules Janssen, Meudon, 92195, France
2LATMOS, CNRS, Université Versailles St-Quentin, Université Paris-Saclay, Sorbonne Université, 11 Bvd d’Alembert, Guyancourt, F-78280, France
Copyright Elsevier
Surface porosity and texture has been found to be an important property for small bodies. Some asteroids and comets can exhibit an extremely high surface porosity in the first millimeter layer. This layer may be produced by various processes and maintained by the lack of an atmosphere. However, the influence of porosity on the spectro-photometric properties of small body surfaces is not yet fully understood.
In this study, we looked into the effect of the texture on the spectro-photometric properties of Phobos regolith spectroscopic simulants. Macro- and micro-porosity were created by mixing the simulants with ultra-pure water, producing ice-dust particles, and then sublimating the water. The sublimation of the water ice enabled the production of porous and rough powdered simulants with significant micro- and macro-porosity associated with macro-roughness. The reflectance spectroscopic properties in the visible and near-infrared (0.5–4.2 μm) demonstrate a brightening of the porous samples in comparison to the compact ones. One simulant exhibits a bluing of the spectral slope after increasing porosity, which is likely linked to the presence of expandable phyllosilicates. In the mid-infrared range, a contrast increase of the 10 μm emissivity-related plateau due to silicates is observed. This spectral feature is typically observed as a 10 μm emissivity plateau on some asteroids, making the mid-infrared region important for assessing mineralogy and surface texture.
Photometry reveals a modification of the phase reddening behavior between the compact powder and the sublimation residue for both simulants. However, the observed behavior is different between the simulants, suggesting that the phase reddening may be dependent on the composition of the simulants. The phase curves of the sublimation residues exhibit a higher contribution of forward scattering. The derivation of the Hapke parameters indicates an increase in roughness for the porous sample, but no significant modification of the opposition effect. The modifications of the spectrophotometric properties observed in this experiment are definitely due to the textural changes obtained after sublimation, which depend on the initial composition of the simulants.
This study aims to provide new insights into the understanding of porosity by using two Phobos simulants in the context of the upcoming JAXA/Martian Moons eXploration mission. We suggest that the Phobos blue unit may be due to the presence of a highly porous layer, rather than only to space-weathering processes, as often postulated.