A refined isotopic composition of cometary xenon and implications for the accretion of comets and carbonaceous chondrites on Earth

1William S. Cassata
Earth and Planetary Science Letters 660, 119307 Link to Article [https://doi.org/10.1016/j.epsl.2025.119307]
1Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA
Copyright Elsevier

The origins of Earth’s volatiles, including water, remain uncertain. Noble gases can be used to constrain volatile sources as they exhibit significant chemical and isotopic variations amongst Solar System materials that Earth may have accreted. Here, I refine the isotopic composition of cometary xenon (Xe) measured during the Rosetta mission by optimizing its fit to isotopically similar presolar grains in meteorites. Using this composition, I show that Earth’s atmosphere can be explained as a mixture of 83.6 ± 3.2% meteoritic, 15.3 ± 2.8% cometary, and 1.1 ± 0.7% fission Xe (1σ; percentages are with respect to 132Xe). This same approach applied to Kr indicates Earth’s atmosphere is 72.1 ± 9.5% meteoritic and 27.9 ± 9.5% cometary Kr (1σ; percentages are with respect to 84Kr). Carbonaceous chondrites are likely the predominant source of meteoritic Xe. A carbonaceous chondrite accretion mass of 1.8– 5.2 wt.-% of Earth at the 95% confidence interval explains the relative abundances of meteoritic and fission Xe in Earth’s atmosphere. Such accretion may have delivered up to 6 – 18 oceans of water to Earth. Conversely, a cometary ice accretion mass of less than 5 × 10–5 wt.-% of Earth explains the relative abundance of cometary Xe. This would have delivered less than 0.2% of Earth’s water. The data further imply a more linear temporal variation in the mass dependent fractionation of atmospheric Xe throughout the first two billion years of Earth history than previously thought.

Submicron-scale craters on Chang’e-5 lunar soils: records of complex space weathering processes

1,2Lixin Gu, 1,3Yangting Lin, 4Yongjin Chen, 5Yuchen Xu,1,2Xu Tang, 1,3Jinhua Li
Geochimica et Cosmochimica Acta (in Press) Open Access Link to Article [https://doi.org/10.1016/j.gca.2025.04.004]
1Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2Institutional Center for Shared Technologies and Facilities, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
3College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
5State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Copyright Elsevier

Hyper-velocity impacts are dominant agents in the physical and chemical alteration of lunar surface materials. Natural small-scale craters on lunar soils provide an opportunity to understand the impact process and specific space weathering effects on minerals, however, they have not been systematically studied. Here, we report the morphology and microstructure of submicron-scale craters on Chang’e-5 lunar soils. Craters are found only on a few soil grains. Most identified craters exhibit large diameter-to-depth (D/d) ratios (>3) or are spatially clustered, indicating that they are formed by secondary ejecta rather than primary micrometeoroid impacts. Advanced electron microscopy investigations revealed that the microstructures of these craters are complex. Craters on the surfaces of two pyroxenes and one olivine have continuous nanophase iron (npFe0)-bearing rims that extend over the crater and beyond over the crystal substrate, even when covered by an impact-produced redeposition layer. These features provide reliable evidence of solar wind exposure prior to the impact events that formed the craters. The possibility cannot be ruled out that the npFe0 particles present in these craters were previously produced by solar wind irradiation and not by impact. However, no clear signs are observed to establish the chronological order of formation of npFe0 particles in other craters studied. Furthermore, a crater on ilmenite has a minimum D/d value of 2.6, suggesting that this crater is likely formed by a primary micrometeoroid impact. Some unusual euhedral and elongated npFe0 particles observed on the crater floor may also have been produced earlier by solar wind irradiation and retained in the crater during subsequent impact. Shock melting and vapor deposition may also contribute to npFe0 formation by reduction during impact. Our findings imply that secondary impacts can also have a high velocity (1–2.38 km/s lunar escape velocity) and play a more crucial role in the microstructural and chemical changes of lunar soils than previously recognized. Moreover, the formation of npFe0 particles in submicron-scale craters may involve multiple processes, such as solar wind irradiation, shock melting, and vapor deposition, and their effects can be superimposed. These new formation processes of npFe0 particles are universal and fundamental to the evolution of materials on the Moon and other airless planetary bodies.