Melting experiments of an L6 ordinary chondrite: Implications for the formation of alkali-rich achondrites

1,2S. Iannini Lelarge, 1,3M. Masotta, 1,3L. Folco, 4T. Ubide, 1,5M.D. Suttle, 6,7L. Pittarello
Geochemistry (Chemie der Erde)(in Press) Link to Article [https://doi.org/10.1016/j.chemer.2025.126293]
1Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
2Institute of Geosciences and Earth Resources, Consiglio Nazionale delle Ricerche, Via Moruzzi 1, 56124 Pisa, Italy
3CISUP, Centro per l’Integrazione della Strumentazione Università di Pisa, Lungarno Pacinotti 43, Pisa 56126, Italy
4School of Earth and Environmental Sciences, The University of Queensland, Brisbane 4102, QLD, Australia
5School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
6Naturhistorisches Museum, Mineralogisch-Petrographische Abteilung, Burgring 7, 1010 Vienna, Austria
7Department of Lithospheric Research, University of Vienna, Josef-Holaubek-Platz 2,1090 Vienna, Austria
Copyright Elsevier

We conducted high-pressure (1 GPa) melting experiments (1100–1400 °C) on the equilibrated ordinary chondrite DAV 01001 (L6) to investigate partial melting scenarios of planetary embryo in the early solar system. At 1100 °C, no melting of the silicate phase is observed, and the initial chondritic texture is preserved, but the metallic-sulphidic phases formed two immiscible Fesingle bondNi and S-rich liquids. Melting of silicate minerals began at 1200 °C, progressing from plagioclase to high-Ca and low-Ca pyroxene and olivine. As melting advanced, the formation of new olivine and low-Ca pyroxene resulted in the production of trachy-andesitic melt at 1200 °C, basaltic trachy-andesitic melt at 1300 °C, and andesitic melt at 1400 °C. These silicate melts have chemical similarities with some anomalous achondrites (e.g., GRA 60128/9). At the same time, minerals of new formation resemble those of primitive achondrites (e.g., brachinites, ureilites, IAB silicate inclusions, acapulcoites and lodranites). The rapid mineral-liquid re-equilibration suggests that basaltic liquids can form only above 1400 °C and that relatively high degrees of melting (>20 %) and crystallisation are necessary to explain the observed diversity of achondritic lithologies. These findings suggest that partial melting and recrystallization processes within planetary embryos could have played a critical role in the early solar system, contributing to the early differentiation of planetary bodies and the diversity of achondritic lithologies, including (but not limited to) alkali-rich achondrites.

Chemical, isotopic (O, He, U), and petrological characteristics of a slowly cooled enriched gabbroic shergottite, Northwest Africa 13134

1Lee Saper,1Yang Liu,2Michael A. Kipp,1David Burney,3Chi Ma,2Francois L. H. Tissot,4Edward Young,3Jonathan Treffkorn,3Kenneth A. Farley
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.14345]
1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
2The Isotoparium, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
3Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
4Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, California, USA
Published by arrangement with John Wiley & Sons

Northwest Africa 13134 is a coarse-grained gabbro with an oxygen isotopic composition consistent with a Martian origin and is classified as an enriched shergottite based on its bulk trace element abundances and bulk La/Yb ratio of 1.53. The meteorite is composed of a framework of large pyroxene rods up to 6 mm in longest dimension (64% by area) with interstitial maskelynite (formerly plagioclase; 28% by area). Minor phases include merrillite and apatite, Fe-Ti oxides, and Fe-sulfides; trace phases such as baddeleyite, tranquillityite, fayalitic olivine, silica, and a felspathic phase are observed in evolved mesostasis pockets and partially crystallized magmatic inclusions in minerals. Individual pyroxene rods display a distinctive patchy Ca zoning pattern of juxtaposed low-Ca (pigeonite) and high-Ca (augite) patches with a common crystallographic orientation indicating epitaxial growth. Low-Ca pigeonite is the volumetrically dominant pyroxene phase (~70% of exposed pyroxene) and was the primary liquidus phase, followed closely by augite. Plagioclase crystallized along with the other minor phases from the residual melt between cumulus pyroxene rods. Pyroxenes display ubiquitous exsolution lamellae with typical widths and spacings of 1–2 μm. Sulfide grains are characterized by flame-shaped lamellar intergrowths of hexagonal pyrrhotite (Fe0.90S) and slightly metal-deficient pyrrhotite (Fe0.98S), along with minor pentlandite and chalcopyrite. The pyroxene and sulfide microtextures suggest that the gabbro experienced slow and protracted subsolidus cooling. Ilmenite-oxide pairs imply an oxygen fugacity of ~1 log unit below the fayalite–magnetite–quartz buffer at a closure T ≈ 875°C. Collectively, the texture and bulk composition suggest that Northwest Africa 13134 represents a slowly cooled and coarsely crystalline portion of a solidified magma body similar to the source of the enriched basaltic shergottites. Magnetite occurs locally as veins crosscutting pyrrhotite grains and in oxide–phosphate symplectites observed at merrillite–apatite phase boundaries. The presence of magnetite in the sample suggests that at various stages of cooling, the gabbro interacted with relatively oxidized fluids, which could be of deuteric or exogeneous origin. A cosmic-ray exposure age of 2.8–4.0 Ma was calculated based on 3He measured in pyroxene grain separates and overlaps with other shergottites. Finally, we present the first bulk uranium isotope measurement of a Martian meteorite: δ238U = −0.22 ± 0.10‰ and δ234Usec = +9.57 ± 0.35‰. These values indicate slight excesses in heavy U but overlap with the distribution of U isotope compositions of the Earth and other solar system materials.