Understanding compositional evolution of hollows at Dominici crater, Mercury

1A. Emran, 1K.M. Stack
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2025.116576]
1NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Copyright Elsevier

Hollows on Mercury are small depressions formed by volatile loss, providing important clues about the volatile inventory of the planet’s surface and shallow subsurface. We investigate the composition of hollows in various phases of devolatilization at Dominici crater. By applying a machine learning approach to MESSENGER Mercury Dual Imaging System data, we defined surface units within the study area and extracted their reflectance spectra. We applied linear (areal) spectral modeling using laboratory sulfides, chlorides, graphite, and silicate mineral spectra to estimate the composition of hollows and their surrounding terrains. At Dominici, the hollow on the crater rim/wall is interpreted to be active, while that in the center of the crater is interpreted as a waning hollow. We find that the active hollow predominantly comprises silicates (augite and albite), with a trace amount of graphite and CaS. In contrast, waning hollows contain marginally elevated sulfides (MgS and CaS) and graphite, but slightly lower silicates than the active hollow. The spectra of low reflectance terrain surrounding the hollows appear to be dominated by graphite and sulfides, which contribute to its darker appearance. We suggest that hollow at the crater forms due to thermal decomposition of sulfides, primarily MgS possibly mixed with CaS, as well as possible the depletion of graphite. As devolatilization wanes, a mixture of predominantly silicate minerals remains in the hollows — impeding further vertical growth.

Discuss