Estimating Primary Magmas From Mars With PRIMARSMELT: Implications for the Petrogenesis of Some Martian Rocks and the Thermal Evolution of Mars

1Juan David Hernández-Montenegro,1Paul D. Asimow,2Claude T. Herzberg
Journal of Geophysical Research (Planets)(In Press) Link to Article [https://doi.org/10.1029/2024JE008508]
1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
2Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
Published by arrangement with John Wiley & Sons

Primary magmas form by partial melting in the mantle of a terrestrial planet and represent the starting material for building its crust. The compositions of primary magmas are critical for understanding the thermal history of planetary interiors, as they can be used to estimate mantle potential temperatures (TP) and track changes in the conditions of mantle partial melting over time. Here, we introduce PRIMARSMELT, a new member of the PRIMELT software family, calibrated to estimate the composition of Martian primary magmas and their formation conditions. We applied PRIMARSMELT to a comprehensive database of basaltic compositions from Mars. Our results are consistent with their petrology, requiring olivine addition to restore fractionated compositions to their primary parents and olivine subtraction from cumulate rocks. Individual primary magma solutions provide insights into the petrogenesis of specific Martian meteorites, with implications for the near-primary nature of some primitive meteorites and the relationship between lithologies A and B in meteorite EETA 79001. Taken together, our results suggest nearly constant or potentially increasing mantle potential temperatures throughout the geological history of Mars. The average TP for young shergottite meteorites is ∼1,442 ± 40°C, similar to ambient mantle temperatures inferred from geophysical models. In contrast, older basaltic rocks record potential temperatures as low as ∼1,320 ± 48°C for igneous clasts in meteorites NWA 7034/7533. We suggest that, rather than plume-related magmatism, shergottite meteorites record ambient mantle temperatures, with the thermal evolution trend possibly resulting from inefficient heat loss, as expected for a planet in stagnant-lid mode.

Infrared Spectroscopy of Lunar Core 73001: Upper Limit on Hydration in a Lunar Sample With No History of Exposure to Terrestrial Water Vapor

1Paul G. Lucey et al. (>10)
Journal of Geophysical Research (Planets) (in Press) Open Access Link to Article [https://doi.org/10.1029/2024JE008389]
1Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI, USA
Published by arrangement with John Wiley & Sons

The lunar surface exhibits an absorption band near 3 μm due to hydration, either water or hydroxyl. In most analyses, the band is variable at least in latitude and temperature. Hypotheses for the variability include infilling of the band by thermal emission, migration of molecular water along temperature gradients, and formation and destruction of metastable hydroxyl as solar wind hydrogen diffuses through lunar surface grains. The degree to which lunar soil exhibits an inherent hydration feature in the absence of environmental influences is an open question. The recent opening of Apollo core sample 73001 that was sealed in vacuum on the lunar surface and curated in dry nitrogen since its return from the Moon affords an opportunity to determine if lunar soil exhibits a spectral feature due to hydration isolated from the lunar environment. To that end, near the close of dissection of the core into samples for allocation to the lunar science community, we introduced an infrared spectrometer into the nitrogen purged curation cabinet and collected reflectance spectra of portions of the core between 2 and 4 μm. We found no evidence of absorption due to hydration to 1.1% band depth uncertainty. The measurements were relative to a diffuse aluminum standard, which itself could possibly absorb light at 3 μm due to a thin film of water; we estimate a possible negative bias of about 50 μg/g equivalent water absorption, leading to a final estimate of core water abundance of 50 μg/g ± 50 μg/g. This finding does not contradict prior estimates of lunar surface hydration as core sample 73001 is immature and may not have had sufficient opportunity to gather enough hydrogen from the solar wind or water from micrometeorites to form detectable hydration. After exposure of the core to laboratory atmosphere, a strong 3 μm absorption developed, equivalent to over 1,000 μg/g at a rate of about 5 μg/g per minute, illustrating the sensitivity of lunar materials to water contamination, and the effectiveness of curation of the sample.