Melting experiments on Fe-S-O-C alloys at Martian core conditions: Possible structures in the O- and C-bearing core of Mars

1Shunpei Yokoo,1,2Kei Hirose
Geochimica et Cosmochimica Acta (in Press) Open Access Link to Article [https://doi.org/10.1016/j.gca.2024.06.027]
1Department of Earth and Planetary Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
2Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
Copyright Elsevier

Recent seismological studies of the Martian core revealed its relatively low density, suggesting the presence of large amounts of light elements including oxygen and carbon in addition to sulfur. In order to reveal crystallizing solids in the light-element-rich core of Mars, we performed high-pressure melting experiments on Fe-S-O-C alloys at 26–49 GPa using a laser-heated diamond-anvil cell. The liquidus phase relations in the Fe-S-O-C system were determined based on textural and chemical characterizations of recovered samples. The results show that Fe-S-O-C liquids crystallize FeO or Fe3C in the presence of small amounts of O or C in liquids. Accordingly the liquidus fields of Fe3S and Fe2S are small, and the quaternary eutectic point is found to be close to the Fe-Fe3S binary eutectic point. Under Martian core conditions, S-rich liquids have low liquidus temperatures to crystallize FeO or Fe3C compared to S-poor liquids. The pressure dependence of liquidus temperatures suggests that crystallization of Mars’ core starts at the center upon cooling. According to the FeO-Fe3C cotectic surfaces and their liquidus temperatures, an FeO and/or Fe3C inner core is predicted unless the Martian core remains entirely liquid.

Pyrrhotites in asteroid 162173 Ryugu: Records of the initial changes on their surfaces with aqueous alteration

1Hiroharu Yui et al. (>10)
Geochimica et Cosmochimica Acta (in Press) Open Access Link to Article [https://doi.org/10.1016/j.gca.2024.06.016]
1Department of Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan
Copyright Elsevier

The surface chemistry of pyrrhotites from intact particles directly collected from asteroid (162173) Ryugu was investigated by micro-Raman spectroscopy. The Raman peak characteristic to pyrrhotite was observed at around 115 cm−1 in Ryugu pyrrhotites, similar to freshly cleaved surfaces of terrestrial pyrrhotites. Additional Raman bands centered at around 220, 275, and 313 cm−1 with broadened features were also detected from the Ryugu pyrrhotites. The set of Raman bands at 220 and 275 cm−1 was assigned to typical Fe-S stretching vibrations of ν2 (225 cm−1) and ν1 (275 cm−1). These bands are not clearly observed in bulk crystals of pyrrhotite but appear in its nanoparticulate phase. These bands are ordinarily seen in amorphous monosulfides that formed under low oxygen fugacity (fO2) conditions in nature, indicating that the structural alteration of pyrrhotite surfaces occurred heterogeneously on the nanoscale under low fO2 conditions. Further, the Raman band at 313 cm−1 was attributed to a characteristic tetrahedral bonding of Fe(III) in the lattice of FeII1-3xFeIII1-2xS, followed by the local breakdown of the crystal lattice structures from planar bonding with Fe(II). In addition, some areas of the Ryugu pyrrhotite grains showed corroded structures with iridescence. Furthermore, assemblages of magnetite particles were also preferentially observed on small areas of the likely-dissolved pyrrhotite crystals in phyllosilicate matrices. These characteristic features in the Raman spectra and in corroded structures of Ryugu pyrrhotites record changes in the local environmental conditions via aqueous alteration. The corrosion of pyrrhotite crystals followed by the preferential formation of magnetite particles by asteroidal water it the likely product of dissolution of Fe(II) from the pyrrhotite surface and its oxidative precipitation in microchemical environments on the Ryugu parent body.