Oxygen Isotopic Variations in the Calcium, Aluminum-rich Inclusion–forming Region Recorded by a Single Refractory Inclusion from the CO3.1 Carbonaceous Chondrite Dar al Gani 083

1Samuel Ebert,2Kazuhide Nagashima,2Alexander N. Krot,1Markus Patzek,1Addi Bischoff
The Astrophysical Journal 966, 10 Open Access Link to Article [DOI 10.3847/1538-4357/ad2ea8]
1Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany,
2Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA

Calcium, aluminum-rich inclusions (CAIs) are the oldest solids dated that formed in the solar system. Most CAIs in unmetamorphosed chondritic meteorites (chondrites; petrologic type ≤3.0) have uniform solar-like 16O-rich compositions (Δ17O ∼ −24‰) and a high initial 26Al/27Al ratio [(26Al/27Al)0] of ∼(4–5) × 10−5, consistent with their origin in a gas of approximately solar composition during a brief (<0.3 Ma) epoch at the earliest stage of our solar system. The nature of O-isotope heterogeneity in CAIs (Δ17O range from ∼−24 up to ∼+5‰) from weakly metamorphosed chondrites (petrologic type >3.0) remains an open issue. This heterogeneity could have recorded fluctuations of O-isotope composition of nebular gas in the CAI-forming region and/or postcrystallization O-isotope exchange of CAI minerals with aqueous fluids on the chondrite parent asteroids. To obtain insights into possible processes resulting in this heterogeneity, we investigated the mineralogy, rare-earth element abundances, and O- and Mg-isotope compositions of a CAI from the CO3.1 chondrite Dar al Gani 083. This concentrically zoned inclusion has a Zn-hercynite core surrounded by layers of (from core to edge) grossite, spinel, melilite, and Al-diopside. The various phases have heterogeneous Δ17O (from core to edge): −2.2 ± 0.6‰, −0.9 ± 2.1‰, −13.7 ± 2.1‰, −2.6 ± 2.3‰, and −22.6 ± 2.1‰, respectively. Magnesium-isotope compositions of grossite, spinel, melilite, and Al-diopside define an undisturbed internal Al–Mg isochron with (26Al/27Al)0 of (2.60 ± 0.29) × 10−6. We conclude that the variations in Δ17O of spinel and diopside recorded fluctuations in O-isotope composition of nebular gas in the CAI-forming region prior to injection and/or homogenization of 26Al at the canonical level. The 16O depletion of grossite and melilite resulted from O-isotope exchange with asteroidal fluid, which did not disturb Al–Mg isotope systematics of the CAI primary minerals.

Discovery of abundant shock-induced metallic lead nanograins in lunar zirconolite

1,2Ai-Cheng Zhang,1Hao-Xuan Sun,1Tian-ran Trina Du,1Jia-Ni Chen,3Li-Xin Gu
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2024.04.025]
1State Key Laboratory for Mineral Deposits Research and School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
2CAS Center for Excellence in Comparative Planetology, China
3Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Copyright Elsevier

The behaviors of radiogenic Pb in Zr-minerals are critical for reconstructing the chronological framework for the evolutionary history of our Earth and other planetary bodies. Previous investigations have revealed the presence of Pb nanograins in some terrestrial zircons and attributed it to radiation decay of U and mobilization and accumulation in zircon and a subsequent thermal metamorphic event. However, whether impact, a ubiquitous and fundamental process for the evolution of materials on planetary surfaces, can directly produce Pb nanograins in Zr-minerals remains unknown. Here, we report the discovery of abundant metallic Pb nanograins in zirconolite polycrystalline aggregates in the brecciated lunar meteorite Northwest Africa 8182. We propose that the metallic Pb nanograins and their host zirconolite polycrystalline aggregates formed during shock lithification of the host meteorite, which had a significant impact on micro-scale U-Pb isotopic chronology of shocked Zr-minerals. The formation of metallic Pb nanograins also indicates that a reduction of PbO took place during shock metamorphism.

Insights on the origin of oldhamite in enstatites meteorites from Ca stable isotopes

1Wei Dai,1Frederic Moynier,1Julien Siebert
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2024.04.022]
1Universite Paris Cité, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, Paris 75005, France
Copyright Elsevier

In order to understand the origin of oldhamite (CaS) in enstatite meteorites, we report Ca isotopic compositions (δ44/40Ca) of oldhamite (obtained from water leachate of bulk chondrites and aubrites and mineral separates from the Norton County aubrite) and silicate minerals from different types of enstatite chondrites and aubrite. The δ44/40Ca of the bulk enstatite chondrites range from 1.05 ‰ to 1.24 ‰, with an average of 1.13 ± 0.12 ‰, higher than that of the estimate of the bulk silicate earth (∼0.94 ‰). Major and trace element analyses show that the water leachates of enstatite chondrites are mainly composed of oldhamite, and they take over 20.6–68.5 % Ca of the bulk meteorite Ca budget. The Ca isotope fractionation between oldhamite and residual silicate (Δ44/40Caoldhamite-silicate) for the studied enstatite chondrites is minimum (−0.44 ‰) for Abee (impact-melt breccia) and maximum (+0.16) for St.Marks (EH5). The Ca isotope fractionation between oldhamite (individual mineral grains and leachate) and silicates in Norton County varies from −0.47 ‰ to −0.31 ‰ with an average of −0.41 ‰. These Δ44/40Caoldhamite-silicate correlate well with previous theoretical calculation and suggests that the oldhamites in Norton County are in isotopic equilibrium with co-existing silicates, and therefore were formed during magmatic processes. However, in enstatite chondrites, the large variation on Δ44/40Caoldhamite-silicate and its negative correlation with metamorphic temperature reflects the redistribution and equilibration of Ca isotopes during metamorphism. The variable Δ44/40Caoldhamite-silicate found in unequilibrated chondrites reflect kinetic Ca isotope fractionation between oldhamite and nebular gas and therefore is evidence for the formation of oldhamite by condensation in the solar nebula