Nanophase magnetite in matrix of anomalous EL3 chondrite Northwest Africa (NWA) 8785

1,2,3M. K. Weisberg,4M. E. Zolensky,5M. Kimura,1,2,3K. T. Howard,2,3D. S. Ebel,2,3M. L. Gray,6C. M. O’D. Alexander
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.14092]

1Department of Physical Sciences, Kingsborough College CUNY, Brooklyn, New York, USA
2Department of Earth and Environmental Sciences, CUNY Graduate Center, New York, New York, USA
3Department of Earth and Planetary Sciences, American Museum of Natural History, New York, New York, USA
4ARES, NASA Johnson Space Center, Houston, Texas, USA
5National Institute of Polar Research, Tokyo, Japan
6Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
Published by arrangement with John Wiley & Sons

NWA 8785 is a remarkable EL3 chondrite with a high abundance (~34 vol%) of an Fe-rich matrix. This is the highest matrix abundance known among enstatite chondrites (ECs) and more similar to the matrix abundances in some carbonaceous and Rumuruti chondrites. X-ray diffraction and TEM data indicate that the fine-grained portion of the NWA 8785 matrix consists of nanoscale magnetite mixed with a noncrystalline silicate material and submicron-sized enstatite and plagioclase grains. This is the first report of magnetite nanoparticles in an EL3. The Si content of the metal (0.7 wt%), presence of ferroan alabandite, and its O isotopic composition indicate NWA 8785 is EL3-related. Having more abundant matrix than in other ECs, and that the matrix is rich in magnetite nanoparticles, which are not present in any other EC, suggest classification as an EL3 anomalous. Although we cannot completely exclude any of the mechanisms or environments for formation of the magnetite, we find a secondary origin to be the most compelling. We suggest that the magnetite formed due to hydrothermal activity in the meteorite parent body. Although ECs are relatively dry and likely formed within the nebular snow line, ices may have drifted inward from just beyond the snow line to the region where the EL chondrites were accreting, or more likely the snow line migrated inward during the early evolution of the solar system. This may have resulted in the condensation of ices and provided an ice-rich region for accretion of the EL3 parent body. Thus, the EL3 parent body may have had hydrothermal activity and if Earth formed near the EC accretion zone, similar bodies may have contributed to the Earth’s water supply. NWA 8785 greatly extends the range of known characteristics of ECs and EC parent body processes.

The Golden meteorite fall: Fireball trajectory, orbit, and meteorite characterization

1,2P.G. Brown et al. (>10)
Meteoritics & Planetary Science (in Press) Open Access Link to Article [https://doi.org/10.1111/maps.14100]
1Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada
2Institute for Earth and Space Exploration, University of Western Ontario, London, Ontario, Canada
Published by arrangement with John Wiley & Sons

The Golden (British Columbia, Canada) meteorite fall occurred on October 4, 2021 at 0534 UT with the first recovered fragment (1.3 kg) landing on an occupied bed. The associated fireball was recorded by numerous cameras permitting reconstruction of its trajectory and orbit. The fireball entered the atmosphere at a 54° angle from the horizontal at a speed of 18 km s−1. The fireball reached a peak brightness of −14, having first become luminous at a height of >84 km and ending at 18 km altitude. Analysis of the infrasonic record of the bolide produced an estimated mass of
kg while modeling of the fireball light curve suggests an initial mass near 70 kg. The fireball experienced a major flare near 31 km altitude where more than half its mass was lost in the form of dust and gram-sized fragments under a dynamic pressure of 3.3 MPa. The strength and fragmentation behavior of the fireball were similar to those reported for other meteorite-producing fireballs (Borovička et al., 2020). Seven days after the fireball occurred, an additional 0.9 kg fragment was recovered during the second day of dedicated searching guided by initial trajectory and dark flight calculations. Additional searching in the fall and spring of 2021–2022 located no additional fragments. The meteorite is an unbrecciated, low-shock (S2) ordinary chondrite of intermediate composition, typed as an L/LL5 with a grain density of ~3530 k gm−3, an average bulk density of 3150 kg m−3 and calculated porosity of ~10%. From noble gas measurements, the cosmic ray exposure age is 25 ± 4 Ma while gas retention ages are all >2 Ga. Short-lived radionuclides and noble gas measurements of the pre-atmospheric size overlap with estimates from infrasound and light curve modeling producing a preferred pre-atmospheric mass of 70–200 kg. The orbit of Golden has a high inclination (23.5°) and is consistent with delivery from the inner main belt. The highest probability (60%) of an origin is from the Hungaria group. We propose that Golden may originate among the background S-type asteroids found interspersed in the Hungaria region. The current collection of 18 L/LL—chondrite orbits shows a strong preference for origins in the inner main belt, suggesting multiple parent bodies may be required to explain the diversity in CRE ages and shock states.