Genetic relationships of solar system bodies based on their nucleosynthetic Ti isotope compositions and sub-structures of the solar protoplanetary disk

1Miriam Rüfenacht,1Précillia Morino,1,2Yi-Jen Lai,1Manuela A. Fehr,1,3Makiko K. Haba,1Maria Schönbächler
Geochimica et Cosmochimica Acta (in Press) Open Access Link to Article [https://doi.org/10.1016/j.gca.2023.06.005]
1Institute of Geochemistry and Petrology, ETH Zurich, Clausiusstrasse 25, CH-8092 Zurich, Switzerland
2Macquarie GeoAnalytical, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, NSW, Australia
3Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ishikawadai Building 2-105, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
Copyright Elsevier

Nucleosynthetic isotope variations are powerful tools to investigate genetic relationships between meteorite groups and planets. They are instrumental to assess the early evolution of the solar system, including mixing and reservoir formation in the protoplanetary disk, as well as planet formation. To address these questions, we report high-precision nucleosynthetic Ti isotope compositions of a wide range of bulk meteorites, partially complemented with new Cr isotope data. New Ti isotope data confirm the first order dichotomy observed between carbonaceous chondrites (CC), representing outer solar system compositions, and non-carbonaceous (NC) meteorites from the inner solar system. The data in combination with nucleosynthetic isotope data of other elements (e.g., Cr, Ca) indicate that isotopically heterogeneous reservoirs were also present as sub-reservoirs in the inner disk (NC reservoir), generating two or more clusters i.e., (i) the Vesta-like howardites-eucrites-diogenites (HEDs), mesosiderites, angrites, acapulcoites, lodranites, and brachinites and (ii) the Earth-Mars-like ordinary chondrites (OC), aubrites, enstatite chondrites (EC), winonaites, IAB silicates, rumuruti chondrites (R), Martian and terrestrial samples. These reservoirs likely represent disk substructures such as secondary gaps and ring-structures, created by spiral arms, which were emitted from the growing Jupiter and/or Saturn. The distinct isotopic compositions of these reservoirs may reflect thermal processing of material within the disk in combination with temporal isotopic variations either due to isotopically variable infalling material from a heterogeneous molecular cloud and/or thermal processing during the infall that induced such heterogeneities. Such effects were likely reinforced by thermal processing of the material within the disk itself and by physical size- and density sorting of dust caused by the giant planets, creating gaps and pressure bumps in the disk.

Genetic relationships of meteorite groups and their implications on parent body formation are evaluated. New high precision Ti isotope data are consistent with that (i) CH and CB meteorites derive from a common parent body, which most likely accreted material from the same isotopic reservoir as the parent body of CR chondrites, (ii) silicates of IAB irons and winonaites originate from the same parent body, and (iii) mesosiderites and HED meteorites have a common origin on Vesta. The indistinguishable Ti and Cr isotope compositions of HEDs/mesosiderites to acapulcoites are not attributed to a common parent body, because of petrologic and chemical differences in addition to their distinct O isotope compositions. Their parent bodies likely accreted in the same disk region, which showed a higher level of O isotope heterogeneity compared to that of Ti, Cr and other refractory nucleosynthetic tracers. The similarity in Ti isotope compositions of Martian meteorites and OCs indicates that OC-like material belongs to the main building blocks of Mars.

Experimental constraints on metal-silicate partitioning of chlorine and implications for planetary core formation

1,2,3Xueping Yang,1,2Zhixue Du,1,2Yuan Li
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2023.06.017]
1State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
2CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
3College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Copyright Elsevier

Chlorine (Cl) is critical for Earth’s habitability and an important tracer for volatile accretion processes. Yet its chemical behavior during core formation, one of the major events throughout planetary formation, is still poorly understood. This is primarily hindered by experimental challenges of reproducing such extreme pressure and temperature conditions and characterizing chemical compositions of recovered samples. Here we perform experiments on Cl partitioning between iron-rich metallic melt (core analog) and silicate melt (mantle analog) at temperatures of 1900–2400 K and pressures of 1–18 gigapascals to simulate core-mantle differentiation of terrestrial planets. More importantly, to avoid likely complications of Cl loss due to wet or oil polishing, we find it is critical to apply dry polishing to recovered samples as shown in previous work focusing on halogens. Our determined partition coefficients of Cl between metallic melt and silicate melt range from <0.003 to 1.38, which shows its siderophile (iron-loving) behavior for the first time. Moreover, we find Cl gradually prefers metallic melt as the increase of pressure, while confirming a positive effect of oxygen contents in metallic liquid. Considering plausible core formation scenarios for Earth and Mars, our results indicate that Cl abundance in Mars’ mantle could be explained by a single-stage core formation scenario. While for the Cl budget in Earth’s mantle, multi-stage core formation with partial core-mantle equilibrium may be required, and this would provide further constraints for dynamics of core formation and volatile accretion.