Extraterrestrial dust flux monitoring at Antarctic Vostok station: New collection of extraterrestrial spherules fallen from May to September 2017

1Y. O. CHETVERIKOV,1,2V. F. EZHOV,3,4M. S. GLUKHOV,5,6E. M. IVANKOVA,2A. S. LOSHACHENKO,2V. D. KALGANOV,2,7O. V. YAKUBOVICH
Meteoritics & Planetary Science (in Press) Link to Article [doi: 10.1111/maps.13991]
1Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center “Kurchatov Institute”,Gatchina, Russia
2Saint Petersburg State University, St. Petersburg, Russia
3Kazan Federal University, Kazan, Russia
4Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
5Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
6Kirov Military Medical Academy, St. Petersburg, Russia7Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg, Russia
Published by arrangement with John Wiley & Sons

Dust particles obtained by filtering fresh snow collected from May to September2017 in the vicinity of Vostok station in Antarctica were examined using a scanning electronmicroscope. The collection of dust particles contains 197 spherules ranging from 0.5 to 117μmin diameter, the most abundant ones (n=188) by far being iron oxide spherules. Analyses ofmeteorological and human activity data suggest an extraterrestrial origin of most of thespherical particles. The particle size distribution histogram showed a smooth increase in theirnumber with decreasing size and a dramatic drop at sizes smaller than 3μm. The number ofspherical particles has an uneven distribution over time, with an intense peak in July 27–28,2017 which correlates by dates with the peak of the Southern Delta Aquariids meteor shower.The size distribution of the particles collected during the same period indicates the presenceof a mechanism that accelerates their fall to the Earth. We propose that they are effectivecenters of condensation of ice crystals in stratospheric clouds. Our data indicate thatcollection of micrometeorites with sizes of several microns from the fresh snow is possible,opening a new way for sampling micrometeorites, including separate meteor showers.

Discuss