Visible to near-infrared reflectance and Raman spectra of evaporites from sulfate-chloride Mars analogue brines

1,2Emmy B. Hughes,1Martha Gilmore,3Peter E. Martin,4Miriam Eleazer
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2023.115597]
1Department of Earth and Environmental Sciences, Wesleyan University, 265 Church St., Middletown, CT 06438, United States of America
2School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
3Department of Geological Sciences, University of Colorado, Boulder
4Department of Astronomy, Wesleyan University, Middletown, CT, United States of America
Copyright Elsevier

While much attention has been given to the identification and characterization of single-phase salts on Mars, relatively little has been applied to mixed evaporative assemblages. Given the likely existence of these assemblages on Mars (e.g., basin deposits) and the lack of data on their spectral signatures, here we present an experimental study of multicomponent S and Cl-bearing Mars-relevant brines. We modeled, synthesized and evaporated brines in the laboratory under both martian and terrestrial (P, T, pCO2) environmental conditions, and characterized the resulting precipitates using Visible–Near Infrared (VNIR), Raman spectroscopy, XRD and SEM-EDS. We compared these results to mineral assemblages calculated using the FREZCHEM thermodynamic model. For mixed brines primarily containing Na+, K+, Mg2+, Ca2+, SO42− and Cl−, epsomite (MgSO4•7H2O) and bischofite (MgCl2•6H2O) overwhelm VNIR and Raman spectra, while anhydrous crystalline salts and Na- and K-sulfates are unidentified. Mg-sulfates are identifiable in the VNIR and Raman even at low or no modeled mass abundance in an evaporative assemblage and are often the only clearly identifiable salt. These results imply that regions of Mg-sulfate identification on Mars may have only minor amounts of Mg-sulfate present, and significant amounts of halides or other sulfates may be undetectable. This may be due to a combination of late-stage Mg-sulfate precipitation and non-linear spectral mixing. Raman is more sensitive than VNIR to the identification of Ca-sulfate salts in these mixed assemblages. We predict that high abundances of mixed chloride and sulfate salts species will be identified as the Curiosity Rover continues to explore the Sulfate Unit of Gale Crater, and note that the Perseverance rover offers the first opportunity to identify such mixed assemblages in Jezero Crater with this combination of techniques.

Carbon-rich icy moons and dwarf planets

1Bruno Reynard,2Christophe Sotin
Earth and Planetary Science Letters 612, 118172 Link to Article [https://doi.org/10.1016/j.epsl.2023.118172]
1Univ Lyon, ENS Lyon, UCB Lyon 1, Univ St-Etienne, CNRS, Laboratoire de Géologie de Lyon, 69007 Lyon, France
2Laboratoire de Planétologie et Géosciences, Nantes Université, Univ Angers, Le Mans Université, CNRS, UMR 6112, F-44000 Nantes, France
Copyright Elsevier

Density and moment of inertia of icy moons and dwarf planets suggest the presence of a low-density carbonaceous component in their rocky cores. This hypothesis was tested using inner density structure and thermal models. Rocky core densities in dwarf planets and icy moons are found to consist of a mixture of chondritic silicate-sulfide rocks and carbonaceous matter. Carbonaceous matter was originally mixed with ice in a rock-free precursor. In a homogeneous accretion scenario where these components are mixed in solar proportions, ices then differentiated from the carbon-rich refractory core, while hydration of silicates could take place. Thermal models taking into account the presence of carbonaceous matter suggest that originally hydrated silicates are only partially dehydrated in the refractory cores of most moons. Viable scenarios point to a difference in formation or evolution between Ganymede and Titan in spite of their similar size and mass. Fully dehydrated mineralogies, inferred in Europa and possibly the densest dwarf planet Eris, require heterogeneous accretion near the water snow line of the solar or circumplanetary nebula. Progressive gas release from slowly warming carbonaceous matter-rich cores may sustain up to present-day the replenishment of ice-oceanic layers in organics and volatiles. It accounts for the observation of nitrogen, light hydrocarbons and complex organic molecules at the surface, in the atmospheres, or in plumes emanating from moons and dwarf planets. The formation of large carbon-rich bodies in the outer solar system suggests that carbon-rich planets could form at the outskirts of extrasolar systems.