1Yves Marrocchi,1Thomas Rigaudier,1Maxime Piralla,1Laurette Piani
Earth and Planetary Science Letters 611, 118151 Link to Article [https://doi.org/10.1016/j.epsl.2023.118151]
1Université de Lorraine, CNRS, CRPG, UMR 7358, Nancy, France
Copyright Elsevier
The conditions and environments in which hydrated phases in unequilibrated meteorites formed remain debated. Among carbonaceous chondrites, Mighei-type chondrites (CMs) display a large range in the degree of aqueous alteration, and thus record different stages of hydration and alteration. Here, we report the bulk H, C, and N contents, H and C isotopic compositions, and thermogravimetric signatures of the most- and least-altered CMs known so far, Kolang and Asuka 12236, respectively. We also report in-situ SIMS measurements of the hydrogen isotopic compositions of water in both chondrites. Compared to other CMs, Asuka 12236 has the lowest bulk water content (3.3 wt.% H2O) and the most D-rich water and bulk isotopic compositions (δD = 180‰ and 280‰, respectively). Combined with literature data, our results show that phyllosilicate-bearing CMs altered to varying degrees accreted water-ice grains with similar isotopic compositions. These results demonstrate that the hydrogen isotopic variations in CM chondrites (i) are not controlled by secondary alteration processes and (ii) were mostly shaped by interactions between the protoplanetary disk and the molecular cloud that episodically fed the disk over several million years. The minimally altered CM chondrites Paris and Asuka 12236 display peculiar, D-rich, hydrogen isotopic compositions that imply the presence of another H-bearing component in addition to insoluble organic matter and phyllosilicates. This component is most likely the hydrated amorphous silicates that are ubiquitous in these chondrites. CM bulk H and O isotopic compositions are linearly correlated, implying that (i) amorphous silicates in CM matrices were already hydrated by disk processes before the onset of CM parent-body alteration, and (ii) the quest for a hypothetically water-free CM3 is illusory.
Day: April 11, 2023
Mass-dependent nickel isotopic variations in achondrites and lunar rocks
1Shui-Jiong Wang,2Shi-Jie Li,3Yangting Lin,1Si-Zhang Sheng
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2023.04.004]
1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
2Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
3Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China]
Copyright Elsevier
We present high-precision mass-dependent nickel isotopic data for a comprehensive suite of achondrites and lunar rocks, providing key insights into the early planetary differentiation and Earth-Moon system formation. The primitive achondrites display high Ni contents and invariant Ni isotopic compositions. Incomplete core-mantle differentiation in primitive achondrite parent bodies resulted in the retention of metal in the mantle, which dominated the Ni budget and accounted for the bulk chondritic Ni isotopic values. The highly reduced differentiated achondrites, aubrites and an ungrouped achondrite (NWA 8409), have variable, and extremely light Ni isotopic compositions. Acid leaching experiments demonstrate that the sulfides are a significant host of light Ni isotopes in aubrites. The most extreme Ni isotope values of aubrites may be due to large Ni isotope fractionation accompanied by silicate-sulfide-metal separation during differentiation of the parent bodies, and subsequent global disruptive collision and reassembly with variably high proportions of sulfides enriched in the mantle. The howardite-eucrite-diogenite (HED) meteorites show Ni isotopic variations that are positively correlated with Ni/Co ratios, a feature that cannot be produced by igneous differentiation. Late accretion of high-Ni and high-Ni/Co chondritic materials after core formation of their likely parent body, Vesta, could have accounted for this correlation. Thus, the primitive silicate mantle of Vesta may have sub-chondritic Ni isotopic compositions, implying possible Ni isotope fractionation during core-mantle differentiation of small planet bodies. The lunar breccia meteorites have homogenously chondritic Ni isotope values, together with their high Ni/Co of bulk rock and metals therein, suggesting impact contamination. Lunar basalt meteorites have low Ni/Co ratios and are systematically isotopically lighter than the breccias, displaying a positive correlation between Ni isotope value and Ni/Co ratio, as that seen in the HEDs. Therefore, the Ni isotopic systematics in lunar rocks also indicates the effect of late accretion, with the primitive lunar mantle having sub-chondritic Ni isotope values. This implies that the Moon-forming impactor, Theia, was likely an aubrite-like differentiated planetary body whose mantle was enriched in light Ni isotopes. We suggest that there was significant Ni isotope fractionation between core and mantle during differentiation of early formed small planetary bodies, but this signature can be obscured by late accretion in the bulk achondrite records.