Petrographic studies and mineralogical characterization of the Dellen impactites

1,2Satu Hietala,3Herbert Henkel,2Jüri Plado
Meteoritics & Planetary Science (in Press) Open Access Lik to Article [https://doi.org/10.1111/maps.13967]
1Geological Survey of Finland, Kuopio, Finland
2Department of Geology, University of Tartu, Tartu, Estonia
3Royal Institute of Technology, Stockholm, Sweden
Published by arrangement with John Wiley & Sons

The impact origin of the Early Cretaceous (140.82 ± 0.51 Ma) 20-km diameter Dellen structure was proven in the late 60s based on the discovery of planar deformation features (PDFs) in quartz grains. Although decades have passed, impactites found from the crater have not received much attention. Thus, this study provides a detailed petrological and mineralogical description of impactites from Dellen. Impactites were classified based on mineralogical observations using the latest recommendations of nomenclature. The studied samples include impact melt rocks (clast rich, clast poor, and clast free), suevitic impact breccias, shocked and unshocked granite, and a shatter cone. Altogether, 16 samples with different lithologies were studied using a polarization microscope. Selected samples were studied with an energy dispersive spectroscopy detector attached to the scanning electron microscopy. PDFs were indexed using a four-axis universal stage from seven samples. Selected samples for PDF studies consisted of clast-rich impact melt rocks (DEL10, DEL13, D99), suevitic impact breccias (DEL14, DEL16, DEL24), and shocked granite target rock (DEL17). A total of 197 PDF sets in 113 quartz grains were studied, and 186 sets resulted in rational crystallographic orientations. Common orientations include π{101̅2}, ω{101̅3}, z{101̅1}, ξ{112̅2}, and {101̅4}. In suevitic impact breccias and impact melt rocks, ballen silica and plagioclase with checkerboard texture were abundant. The petrographic results in Dellen impactites indicate a range of shock pressures from at least 2 to over 60 GPa, based on diagnostic shock metamorphic features in minerals and the occurrence of impact melt rock.

In-situ formation of halite in the Sidi El Habib 001 (H5) ordinary chondrite: Implications for hydrothermal alteration in ordinary chondrite parent bodies

1Shaofan Che,1Kenneth J. Domanik,1,2Thomas J. Zega
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2023.03.010]
1Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
2Department of Materials Science and Engineering, University of Arizona, Tucson, AZ, United States
Copyright Elsevier

The microstructures and chemistry of secondary feldspars and phosphates in equilibrated ordinary chondrites (OCs) suggest that fluids were involved in the formation of these phases, challenging the conventional view that secondary alteration of equilibrated OCs occur under water-absent conditions. The newly discovered Sidi El Habib 001 (SEH 001), a halite-bearing H5 OC, provides a unique opportunity to further probe the role of fluids during thermal metamorphism on the OC parent bodies. Here we report a petrographic and mineralogic study of SEH 001, with the aim of understanding the origins of halite grains and their implications for the alteration histories of equilibrated OCs. Our investigation reveals a main halite-bearing lithology and a halite-free lithology, both of which show equilibrated textures. Except for halides, no significant textural or compositional differences were observed between halite-bearing and -free lithologies. Halite occurs at all spatial scales in the main lithology and shows clear textures of replacing albitic plagioclase and Cl-apatite. Chlorapatite grains in SEH 001 are Cl-rich and many of them contain elevated amounts of “other” anions.

Our observations suggest that halite grains in SEH 001 formed in situ on the parent body via precipitation from an aqueous fluid. The replacement of plagioclase and Cl-apatite by halite and the equilibrated textures of halite-bearing and halite-free lithologies point to a hydrothermal alteration history where halite formed during advanced thermal metamorphism before the fluid was completely lost. The two lithologies were likely affected by fluids with different Cl concentrations that resulted from heterogeneous distribution of HCl hydrate. Based on comparison to experimental data, halite in SEH 001 could have survived peak metamorphism because of its relatively high thermal stability. Collisional disruption of its original parent body could also facilitate the preservation of halite via release of heat. In the rubble pile model of the OC parent body formation, subsequent accretion of hot fragments into a rubble pile body could have resulted in the blurred boundaries between halite-free and -bearing lithologies now observed in our sample. The occurrence of halite in SEH 001 is clear evidence that aqueous fluids were involved in the alteration of equilibrated OCs.

Combined with previous reports of hydrous minerals (such as phyllosilicates) and other related aqueous products in unequilibrated OCs, our study further suggests that S-type asteroids, the parent bodies of OCs, could be more hydrated than previously thought and might serve as a potential source of water for terrestrial planets in the inner solar system. Nevertheless, whether the proposed hydrothermal history of SEH 001 can be extrapolated to other equilibrated OCs needs to be tested. The in-situ formation origin of halite in SEH 001 contrasts with the exogeneous origin of halite in Monahans (1998) and Zag, suggesting that halites with different origins occurred on the OC parent bodies. The rarity of halite in OCs could be attributed to the heterogeneous distribution of HCl hydrate in the OC parent bodies, although the fragile nature of halite in terrestrial and laboratory environments also increases the likelihood of halite being destroyed in OC samples.