High alumina basalts identification and their feature analysis in Mare Fecunditatis

1Ming Ma,1Jingran Chen,2Clive R. Neal,3,4Shengbo Chen,1Bingze Li,1Chenghao Han,1Peng Tian
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2023.115464]
1School of Surveying and Exploration Engineering, Jilin Jianzhu University, Changchun, China
2Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
3School of Geo-Exploration Science and Techniques, Jilin University, Changchun, China
4Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei, China
Copyright Elsevier

High alumina (HA) mare basalts play unique roles in understanding the heterogeneity of lunar mantle. Their presence was confirmed by the Apollo and Luna samples, and their remote sensing identification was implemented using HA sample FeO, TiO2 and Th concentration constraints. This study selected the surfaces with ~0.5% rock abundance as windows into HA basalts identification. The lithology of these rock pixels was first classified based on thorium maps from the Lunar Prospector and major element oxide products from Diviner data onboard the Lunar Reconnaissance Orbiter (LRO). Then, the LRO Diviner Al2O3 (~11 wt%) concentration constraint was applied in the mare basalt rock pixels across the Moon. The mare-highland mixtures were distinguished from HA basalt rocks based on the positive linear relationships between Al2O3 and Mg# in the adjacent pixels for four impact vector directions away from each candidate HA pixel. These HA basalts rock pixels identified by this study indicate that HA basalts are concentrated locally in South Pole-Aitken (SPA) basin, Schiller-Schickard region and 13 maria such as southern and northern Oceanus Procellarum, central Humorum, Tranquillitatis, Fecunditatis and Serenitatis, northern Imbrium and southern Nubium, but are seldom found in Mare Moscoviense and Orientale regions on the farside. Detailed investigations in Mare Fecunditatis found that fifteen HA basalt units or patches could be confidently identified. These HA basalts have the total area and volume of <77,658 km2 and < 54,301 km3, and the maximum depth and thickness of 1147 m and 1062 m respectively. In addition, analyses of the HA rocks indicated that the HA basalts are discontinuous and have variable thicknesses.

Melt migration in rubble-pile planetesimals: Implications for the formation of primitive achondrites

1Zhongtian Zhang,1David Bercovici,2Linda T. Elkins-Tanton
Earth and Planetary Science Letters (in Press) Link to Article [https://doi.org/10.1016/j.epsl.2023.118019]
1Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
2School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
Copyright Elsevier

Primitive achondrites represent residual mantle material of planetesimals from which up to 20% partial melts were extracted. Melting experiments on chondritic compositions suggest that melts produced by ≲20% partial melting are rich in silica and alkali elements. Such melts are highly viscous (≳103Pa⋅s), and percolation models predict that they would only migrate negligible distances over timescales of 1–10Myr. After these timescales, a planetesimal would either be melted into a magma ocean by radiogenic heating from Al26, if it formed early; or it would cool below solidus, if it formed relatively late. However, melt migration is also controlled by permeability, which could be high for aggregates of rock boulders (compared to those of mineral grains). Specifically, the theory of planet formation suggests that collisions occurred frequently between planetesimals in the early solar system. These collisions may have shattered the planetesimals into fragments with sizes of meters to tens of meters, which would have accreted gravitationally into one or more daughter bodies. We develop a model to investigate melt migration in “rubble-pile” planetesimals; in particular, the melt exchange between partially molten rock boulders and the void space between them. The results suggest that, with typical properties of primitive achondrite materials at the conditions of low-degree partial melting, melts may have been squeezed into the voids between boulders, and migrated rapidly through these channels. Therefore, primitive achondrites may record melt migration in rubble-pile bodies reaccreted from fragments of partially molten planetesimals.