1János Kodolányi,1Peter Hoppe,2Christian Vollmer,2Jasper Berndt,3Maren Müller
The Astrophysical Journal 929,107 Open Access Link to Article [DOI 10.3847/1538-4357/ac5910]
1Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany; j.kodolanyi@mpic.de
2University of Münster, Institute for Mineralogy, Corrensstrasse 24, D-48149 Münster, Germany
3Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
We measured the nickel isotope composition of troilites from chondritic meteorites using the NanoSIMS to put constraints on the abundance of iron-60 in the early solar system. The troilites were selected from petrologic type 3 ordinary and carbonaceous chondrites. Based on petrographic observations and mineral chemistry, the troilites targeted for isotope analysis crystallized from melts, most likely in a nebular setting. Our isotope analyses did not reveal any significant correlation between nickel-60 enrichments and Fe/Ni ratios, either in the entire set of troilite grains or in individual troilites. The average inferred initial 60Fe/56Fe ratio of the studied troilites (i.e., the 60Fe/56Fe ratio calculated for the entire troilite population) is 1.05 (±1.48) ×10−8. This value is very similar to those estimated in the past for Semarkona chondrules, angrites, as well as diogenites and eucrites, based on the isotope analyses of bulk samples (10−9–10−8), but about two orders of magnitude smaller than the average initial 60Fe/56Fe ratios inferred previously for Semarkona troilites and many chondrules from ordinary and carbonaceous chondrites (10−7–10−6) using in situ analysis techniques. Based on petrographic evidence, and the generally unequilibrated nature of our samples, as well as on the timing of chondrule formation and planetary evolution, the lack of discernible signs of in situ iron-60 decay in the studied troilites is probably unrelated to metamorphic re-equilibration, and it is also not the result of a late formation of the troilites. We suggest that the highest inferred initial 60Fe/56Fe ratios reported in the literature are probably inaccurate.
Day: December 20, 2022
Monte Carlo Simulation of Dust Particles in a Protoplanetary Disk: Crystalline to Amorphous Silicate Ratio in Comets
1Tamami Okamoto,1Shigeru Ida
The Astrophysical Journal 928, 171 Open Access Link to Article [DOI 10.3847/1538-4357/ac4bc1]
1Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, 152-8550 Tokyo, Japan
The observationally inferred crystalline abundance in silicates in comets, which should have been formed in the outer region of a protoplanetary disk, is relatively high (∼10%–60%), although crystalline silicates would be formed by the annealing of amorphous precursors in the inner disk region. In order to quantitatively address this puzzle, we performed a Monte Carlo simulation of the advection/diffusion of silicate particles in a turbulent disk in a setting based on the pebble accretion model: pebbles consisting of many small amorphous silicates embedded in an icy mantle are formed in the outer disk region, silicate particles are released at the snow line, crystalline silicate particles are produced at the annealing line, silicate particles diffuse beyond the snow line, and they eventually stick to drifting pebbles to return to the snow line. In the simple case without sticking and with steady pebble flux, we show through the simulations and analytical arguments that the crystalline components in silicate materials beyond the snow line are robustly and uniformly ≃5%. On the other hand, in a more realistic case with sticking and with a decaying pebble flux, the crystalline abundance increases to ∼20%–25%, depending on the ratio of the decay to diffusion timescales. This abundance is consistent with the observations. In this investigation, we assume a simple steady-accretion disk. The simulations coupled with the disk evolution are needed for a more detailed comparison with observed data.