From Lake to River: Documenting an Environmental Transition across the Jura/Knockfarril Hill Members Boundary in the Glen Torridon Region of Gale crater (Mars)

1,2G.Caravaca et al. (>10)
Journal of Geophysical Research (Planets) Open Access Link to Article [https://doi.org/10.1029/2021JE007093]
1UMR 5277 CNRS, UPS, CNES Institut de Recherche en Astrophysique et Planétologie, Université Paul Sabatier Toulouse III, Toulouse, France
2UMR 6112 CNRS Laboratoire de Planétologie et Géosciences, Nantes Université, Université d’Angers, Nantes, France
Published by arrangement with John Wiley & Sons

Between January 2019 and January 2021, the Mars Science Laboratory team explored the Glen Torridon region in Gale crater (Mars), known for its orbital detection of clay minerals. Mastcam, MAHLI and ChemCam data are used in an integrated sedimentological and geochemical study to characterize the Jura member of the upper Murray formation and the Knockfarril Hill member of the overlying Carolyn Shoemaker formation in northern Glen Torridon. The studied strata show a progressive transition represented by interfingering beds of fine-grained, recessive mudstones of the Jura member and coarser-grained, cross-stratified sandstones attributed to the Knockfarril Hill member. Whereas the former are interpreted as lacustrine deposits, the latter are interpreted as predominantly fluvial deposits. The geochemical composition seen by the ChemCam instrument show K2O-rich mudstones (∼1-2 wt.%) vs MgO-rich sandstones (>6 wt.%), relative to the average composition of the underlying Murray formation. We document consistent sedimentary and geochemical datasets showing that low-energy mudstones of the Jura member are associated with the K-rich endmember, and that high-energy cross-stratified sandstones of the Knockfarril Hill member are associated with the Mg-rich endmember, regardless of stratigraphic position. The Jura to Knockfarril Hill transition therefore marks a significant paleoenvironmental change, where a long-lived and comparatively quiescent lacustrine setting progressively changes into a more energetic fluvial setting, as a consequence of shoreline regression due to either increased sediment supply or lake-level drop.

Evolved gas analyses of sedimentary rocks from the Glen Torridon Clay-Bearing Unit, Gale crater, Mars: Results from the Mars Science Laboratory Sample Analysis at Mars Instrument Suite

1A.C.McAdam et al. (>10)
Journal of Geophysical Research (Planets) (in Press) Link to Article [https://doi.org/10.1029/2022JE007179]
1NASA Goddard Space Flight Center, Greenbelt, MD, USA
Published by arrangement with John Wiley & Sons

Evolved gas analysis (EGA) data from the Sample Analysis at Mars (SAM) instrument suite indicated Fe-rich smectite, carbonate, oxidized organics, Fe/Mg sulfate, and chloride in sedimentary rocks from the Glen Torridon (GT) region of Gale crater that displayed phyllosilicate spectral signatures from orbit. SAM evolved H2O data indicated that the primary phyllosilicate in all GT samples was an Fe-rich dioctahedral smectite (e.g., nontronite) with lesser amounts of a phyllosilicate such as mixed layer talc-serpentine or greenalite-minnesotaite. CO2 data supported the identification of siderite in several samples, and CO2 and CO data was also consistent with trace oxidized organic compounds such as oxalate salts. SO2 data indicated trace and/or amorphous Fe sulfates in all samples and one sample may contain Fe sulfides. SO2 data points to significant Mg sulfates in two samples, and lesser amounts in several other samples. A lack of evolved O2 indicated the absence of oxychlorine salts and Mn3+/ Mn4+ oxides. The lack of, or very minor, evolved NO revealed absent or very trace nitrate/nitrite salts. HCl data suggested chloride salts in GT samples. Constraints from EGA data on mineralogy and chemistry indicated that the environmental history of GT involved alteration with fluids of variable redox potential, chemistry and pH under a range of fluid-to-rock ratio conditions. Several of the fluid episodes could have provided habitable environmental conditions and carbon would have been available to any past microbes though the lack of significant N could have been a limiting factor for microbial habitability in the GT region.