Titanium isotope systematics of refractory inclusions: Echoes of molecular cloud heterogeneity

1,2Quinn R.Shollenberger,2Jan Render1Michelle K.Jordan,1Kaitlyn A.McCain,2Samuel Ebert,2Addi Bischoff,2Thorsten Kleine,1Edward D.Young
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2022.03.001]
1Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, 595 Charles E Young Dr E, Los Angeles, CA 90095, USA
2Institut für Planetologie, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
Copyright Elsevier

Calcium-aluminum-rich inclusions (CAIs) are highly refractory objects found in different chondrite groups and represent some of the oldest known solids of the Solar System. As such, CAIs provide key information regarding the conditions prevailing in the solar protoplanetary disk as well as subsequent mixing and transport processes. Many studies have investigated CAIs for their isotopic compositions and reported nucleosynthetic isotope anomalies in numerous elements, which are typically explained by the variable incorporation of isotopically highly anomalous presolar phases. However, with the exception of 54Cr-enriched nanospinels, the exact presolar phases responsible for the isotopic heterogeneities are yet to be identified. To address this issue, we here present in-situ Ti isotopic analyses obtained on a diverse set of CAIs from various CV3 chondrites. The in-situ measurements were performed by targeting individual mineral phases of 15 CAIs with laser-ablation mass spectrometry and indicate significant inter- and intra-CAI isotopic heterogeneity in the neutron-rich isotope 50Ti. This is particularly pronounced for primitive fine-grained CAIs, whereas coarse-grained CAIs, which have been subject to melting, exhibit smaller degrees of Ti isotopic heterogeneity.

To further investigate this Ti isotopic heterogeneity, we additionally obtained Ti isotopic compositions of sequential acid leachates from two fine-grained and two coarse-grained CAIs derived from CV3 chondrites. In contrast to potential expectations from the first part of the study, we do not observe any significant intra-CAI Ti isotopic heterogeneity between the different leaching steps. The lack of intra-CAI Ti isotopic heterogeneity in the acid leachate samples of this study likely reflects that the leaching procedure is unable to efficiently separate the carriers of isotopically anomalous Ti in CAIs. By comparing the bulk CAI Ti isotope compositions with Ti isotope data for hibonite-rich objects from the literature, we find that the range of Ti isotope compositions recorded by CAIs from various chondrite groups can be accounted for by the averaging of hibonite grains. In turn, the variable Ti isotope compositions of hibonite grains can be explained by the averaging of isotopically diverse presolar grains present in the Sun’s parental molecular cloud. This effect of averaging is statistically supported by the central limit theorem, and the concept has the potential to be useful for other isotopic systems.

Tungsten and molybdenum isotopic evidence for an impact origin of pallasites

1Thomas S.Kruijer,2Christoph Burkhardt,1Lars E.Borg,2,3Thorsten Kleine
Eaerth and Planetary Science Letters 584, 117440 Link to Article [https://doi.org/10.1016/j.epsl.2022.117440]
1Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, 7000 East Avenue (L-231), Livermore, CA 94550, USA
2Institut für Planetologie, University of Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
3Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
Copyright Elsevier

The origin of pallasites—stony-iron meteorites mainly composed of olivine and Fe-Ni metal—is debated and proposed formation scenarios broadly range from models that explain pallasite formation by internal processes in the mantle of a differentiated planetesimal to those that involve impact–induced mixing of core and mantle materials. Here, the origin of pallasites is examined by studying the nebular source regions of their precursor material using Mo isotopes and their history of metal-silicate segregation using Hf-W chronometry. We report new Mo and W isotopic data for a large suite of pallasite metal samples, alongside Pt isotope data to quantify superimposed cosmic ray exposure effects. Most main-group pallasites exhibit uniform pre-exposure 182W and Mo isotopic compositions that bear an excellent similarity to those of IIIAB iron meteorites. Four main-group pallasites and the IIIAB iron Thunda have more radiogenic pre-exposure 182W compositions, but display the same Mo isotopic composition as other main-group pallasites and IIIAB irons. This strong chronological and genetic link strongly suggests that main-group pallasite metal originated in the IIIAB parent body core. This, combined with prior Pd-Ag chronometric evidence for an early collisional disruption of the IIIAB parent body, implies that main-group pallasites formed by impact–induced mixing of metal and silicates rather than by an internal process on the IIIAB parent body. This mixing led to elevated 182W compositions in some pallasites, which are best accounted for by partial re-equilibration of IIIAB metal with radiogenic 182W from the colliding body. Collectively, our results support models that explain main-group pallasite formation by injection of pallasite metal into the mantle of another differentiated body, implying that pallasite silicates did not primarily derive from the IIIAB mantle, but instead from that of the colliding body.