1Ariel N.Deutsch,2Joseph S.Levy,1,3James L.Dickson,1James W.Head
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2022.114990]
1Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA
2Department of Geology, Colgate University, Hamilton, NY 13346, USA
3Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Copyright Elsevier
Soil salt deliquescence and soil porewater solution growth are key processes that generate potentially habitable conditions in hyperarid environments on Earth and could form near-surface pore waters on Mars. However, direct detection of soils darkened by saline porewater solutions on Mars has proven difficult owing to the limited number of imaging opportunities over potential brine-bearing sites, the limited diel temporal coverage of orbital sensors, and the diversity of spectroscopic properties of potentially brine-bearing substrates that limits direct detection of hydrated mineral phases. Here, we explore how these observational limitations would affect the interpretation of highly dynamic soil salt patches observed in the McMurdo Dry Valleys, Antarctica. These salt patches show daily and seasonal albedo change, darkening and brightening over timescales of minutes. Fully darkened conditions occur at a median surface relative humidity of 67.9 ± 10.7%, while bright conditions occur at lower median surface relative humidity of 38.9 ± 14.5%, leading to the interpretation that the albedo changes are caused by soil salt deliquescence and brine droplet growth. These humidity thresholds and the daily hysteresis between deliquesced and effloresced conditions are consistent with the properties of sulfate and chloride salts found at the site, but occur on timescales much faster than those observed under laboratory conditions (minutes vs. hours–days). Darkened soil patch conditions are most common between 21:00 and 06:00 local time, and are not detected during 78% of afternoon imaging opportunities, suggesting that episodic, afternoon satellite imaging would not be effective in resolving rapid albedo changes on similar planetary landscapes such as Mars. Instead, synoptic, high-cadence imaging is a more suitable remote sensing tool for evaluating albedo changes driven by surface salt deliquescence and efflorescence.
Day: March 14, 2022
Connecting asteroids and meteorites with visible and near-infrared spectroscopy
Francesca E.DeMeo et al. (>10)
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2022.114971]
1Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Copyright Elsevier
In this work we identify spectral similarities between asteroids and meteorites. Using spectral features such as absorption bands and spectral curvature, we identify spectral matches between 500 asteroid spectra and over 1,000 samples of RELAB meteorite spectra over visible plus near-infrared wavelengths (0.45–). We reproduce and confirm many major and previously known meteorite-asteroid connections and find possible new, more rare or less-established connections. Well-established connections include: ordinary chondrites with S-complex asteroids; pristine CM carbonaceous chondrites with Ch-type asteroids and heated CMs with C-type asteroids ; HED meteorites with V-types; enstatite chondrites with Xc-type asteroids; CV meteorites with K-type asteroids; Brachinites, Pallasites and R chondrites with olivine-dominated A-type asteroids.
In addition to the link between ordinary chondrite meteorites with S-complex asteroids, we find a trend from Q, Sq, S, Sr to Sv correlates with LL to H, with Q-types matching predominately to L and LL ordinary chondrites, and Sr and Sv matching predominantly with L and H ordinary chondrites. We find ordinary chondrite samples that match to the X-complex. These are measurements of slabs and many are labeled as dark or black (shocked) ordinary chondrites. We find carbonaceous chondrite samples having spectral slopes large enough to match D-type asteroid spectra.
We find in many cases the asteroid type to meteorite type links are not unique, for classes with and without distinct spectral features. While there are examples of dominant matches between an asteroid class and meteorite class that are well established, there are less common but still spectrally compatible matches between many asteroid types and meteorite types. This result emphasizes the diversity of asteroid and meteorite compositions and highlights the degeneracy of classification by spectral features alone requiring additional measurements to firmly establish asteroid-meteorite links. Recent and upcoming spacecraft missions will shed light on the compositions of many of the asteroid classes, particularly those without diagnostic features, (C-, B-, X-, and D-types), with measurements of C-type Ceres, C-type Ryugu, B-type Bennu, M-type Psyche, and C-, P-, and D-types as part of the Lucy mission.