Ground truth constraints and remote sensing of lunar highland crust composition

1Paul H. Warren,2Randy L. Korotev
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13780]
1Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, 90095 USA
2Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri, 63130 USA
Published by arrangement with John Wiley & Sons

We review constraints on the magnitude and possible causes of discrepancies, or at least major disparities, among global and near-global data sets for lunar highland surface composition. When compared with data from other sources, reported mafic mineral abundance results from the Kaguya Spectral Profiler (Kaguya SP) spectral reflectance method for four Apollo 16 soils appear systematically low by a factor of 0.6, or an even more extreme factor (~1/3) if viewed in relation to the soils’ nonglass or CIPW mineralogy. Also, whether evaluated on a global median basis or on the basis of site-by-site comparison (for Apollo 16, Luna 20, and Apollo 17), the compositions found by the Kaguya SP technique show discrepancy, or at least disparity, versus other mafic abundance observations by that same factor of ~1/3. Spectral reflectance does not supply a simple bulk analysis of the target soil. The reflectance mineralogical signal is preponderantly determined by the nonglass fraction, and especially the masswise subordinate 10–20 µm grain size fraction. Literature data show that in anorthositic lunar soil, chemical composition is fractionated, more extremely anorthositic, for the nonglass component compared to the glass component. Also, the grain size fraction (10–20 μm) that most closely matches bulk reflectance has a significantly higher abundance of impact/agglutinitic glass than does the coarser material that dominates the soil mass. The Kaguya SP mafic abundance calibration needs adjustment by a factor of nearly 3 if results are to be interpreted as indicative of the mineralogy of the underlying crust. A claimed detection of several hundred lunar 500 m scale purest anorthosite (PAN; ≥98 vol% plagioclase) locales among millions of spectral reflectance observations is dubious, in part because with large data sets, compositional extremes are inevitably exaggerated as a byproduct of analytical uncertainty. Preponderance of PAN composition is rare among terrestrial layered intrusive anorthosites and is neither required nor expected for the flotation crust of a global magma ocean. Buoyant flotation and compaction would not suffice to yield pure plagioclase unless adcumulus growth was negligible, and trace element contents of ferroan anorthosites show that their mafic silicate components are for the most part of adcumulus, not “trapped melt,” derivation. A PAN-dominated crust would imply a curiously fractionated (low) thorium/aluminum ratio for the crust, an implausibly high mantle/crust Th concentration ratio, and an oddly low Th/Al for the bulk Moon. Remote sensing techniques for planetary regolith composition are not easy to calibrate, particularly near the extremes of composition-space and sensitivity.

The manufacture and origin of the Tutankhamen meteoritic iron dagger

1,2Takafumi Matsui,2Ryota Moriwaki,3Eissa Zidan,1Tomoko Arai
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13787]
1Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba, 275-0016 Japan
2Institute for Geo-Cosmology, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba, 275-0016 Japan
3Conservation Center, Grand Egyptian Museum, El Remayah Square, Cairo-Alex. Road, Pyramids, Giza Governorat, Egypt
Published by arrangement with John Wiley & Sons

The Iron Age was the time when people acquired iron processing technology and is generally thought to have begun after 1200 B.C. Some prehistoric iron artifacts made of iron meteorites are dated from the Bronze Age. A nicely preserved meteoritic iron dagger was found in the tomb of King Tutankhamen (1361–1352 B.C.) of ancient Egypt. Yet, its manufacturing method and origin remain unclear. Here, we report nondestructive two-dimensional chemical analyses of the Tutankhamen iron dagger, conducted at the Egyptian Museum of Cairo. Elemental mapping of Ni on the dagger blade surface shows discontinuous banded arrangements in places with “cubic” symmetry and a bandwidth of about 1 mm, suggesting a Widmanstätten pattern. The intermediate Ni content (11.8 ± 0.5 wt%) with the presence of the Widmanstätten pattern implies the source meteorite of the dagger blade to be octahedrite. The randomly distributed sulfur-rich black spots are likely remnants of troilite (FeS) inclusions in iron meteorite. The preserved Widmanstätten pattern and remnant troilite inclusion show that the iron dagger was manufactured by low-temperature (<950 °C) forging. The gold hilt with a few percent of calcium lacking sulfur suggests the use of lime plaster instead of gypsum plaster as an adhesive material for decorations on the hilt. Since the use of lime plaster in Egypt started during the Ptolemaic period (305–30 B.C.), the Ca-bearing gold hilt hints at its foreign origin, possibly from Mitanni, Anatolia, as suggested by one of the Amarna letters saying that an iron dagger with gold hilt was gifted from the king of Mitanni to Amenhotep III, the grandfather of Tutankhamen.

Structural peculiarities, mineral inclusions, and point defects in yakutites—A variety of impact-related diamond

1,2Andrei A. Shiryaev,3Anton D. Pavlushin,4,5Alexei V. Pakhnevich,6Ekaterina S. Kovalenko,1Alexei A. Averin,7Anna G. Ivanova
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13791]
1A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr. 31 korp. 4, Moscow, 119071 Russia
2Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow, 119017 Russia
3Diamond and Precious Metal Geology Institute, Siberian Branch of RAS, Lenin pr. 39, Yakutsk, 677000 Russia
4Paleontological Institute RAS, Profsoyuznaya str. 123, Moscow, 117997 Russia
5The Frank Laboratory of Neutron Physics, JINR, Dubna, 141980 Russia
6NRC “Kurchatov Institute,”, Kurchatov square 1, Moscow, 123182 Russia
7Shubnikov Institute of Crystallography FSRC “Crystallography and Photonics” RAS, Leninsky pr. 53, Moscow, 119333 Russia
Published by arrangement with John Wiley & Sons

An unusual variety of impact-related diamond from the Popigai impact structure—yakutites—is characterized by complementary methods including optical microscopy, X-ray diffraction, radiography and tomography, infrared, Raman, and luminescence spectroscopy providing structural information at widely different scales. It is shown that relatively large graphite aggregates may be transformed to diamond with preservation of many morphological features. Spectroscopic and X-ray diffraction data indicate that the yakutite matrix represents bulk nanocrystalline diamond. For the first time, features of two-phonon IR absorption spectra of bulk nanocrystalline diamond are interpreted in the framework of phonon dispersion curves. Luminescence spectra of yakutite are dominated by dislocation-related defects. Optical microscopy supported by X-ray diffraction reveals the presence of single crystal diamonds with sizes of up to several tens of microns embedded into nanodiamond matrix. The presence of single crystal grains in impact diamond may be explained by chemical vapor deposition–like growth in a transient cavity and/or a seconds-long compression stage of the impact process due to slow pressure release in a volatile-rich target. For the first time, protogenetic mineral inclusions in yakutites represented by mixed monoclinic and tetragonal ZrO2 are observed. This implies the presence of baddeleyite in target rocks responsible for yakutite formation.