High precision 26Al-26Mg chronology of chondrules in unequilibrated ordinary chondrites: evidence for restricted formation ages

1Guillaume Siron,1Kohei Fukuda,2Makoto Kimura,1Noriko T.Kita
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2022.02.010]
1WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
2National Institute of Polar Research, Meteorite Research Center, Midoricho 10-3, Tachikawa, Tokyo 190-8518, Japan
Copyright Elsevier

Chondrules in ordinary chondrites are considered to form in high density environments, likely related to the evolution of protoplanets and large planetesimals. In order to determine the timing of their formation at high time resolution (≤0.1 Ma), we conducted high precision Al-Mg chronology of 17 porphyritic chondrules from 6 different unequilibrated ordinary chondrites (UOCs) of low petrologic subtypes (3.00-3.05). Detailed petrology, mineralogy, and oxygen isotope ratios of individual chondrules were also obtained that include 10 additional chondrules without Al-Mg ages. Seventeen chondrules for Al-Mg chronology consist of 14 chondrules with plagioclase (An1-An87) and three chondrules with Na-rich glassy mesostasis, all of which have high 27Al/24Mg ratios (30-3,000). The inferred initial (26Al/27Al)0 ratios range between (6.5 ± 0.6)×10–6 to (9.5 ± 1.0)×10–6, corresponding to chondrule formation ages of 1.74 ± 0.12/0.11 Ma to 2.13 ± 0.09 Ma after CAIs, which have a canonical (26Al/27Al)0 ratio of 5.25×10–5. Six albite-bearing chondrules (An<30) show a much more restricted ages range, spanning between 2.00 ± 0.11/0.10 Ma and 2.07 ± 0.11/0.10 Ma. Including 14 anorthite-bearing chondrules studied previously, chondrules in ordinary chondrites have a restricted range of formation ages from 1.8 Ma to 2.2. Ma after CAIs.

Based on the newly acquired oxygen isotope data and previous high precision studies, chondrules in L and LL chondrites do not show systematic difference in their δ18O and δ17O signatures. Majority of plagioclase-bearing chondrules studied for Al-Mg chronology show similar oxygen isotope ratios to those of glass-bearing chondrules. There is no obvious difference in Al-Mg ages of chondrules between L and LL chondrites. Thus, chondrules in L and LL chondrites would have formed in common environments and processes, though they accreted to two separate parent bodies by 2.2 Ma after CAIs, which timing is consistent with the proposed thermal model for ordinary chondrite parent bodies. Onset of chondrule formation at 1.8 Ma after CAIs may be caused by the delay of Jupiter formation or the formation of protoplanets in ordinary chondrite chondrule forming regions if chondrules formed by large scale disk shock or impact jetting of protoplanets. Alternatively, early formed chondrules would not be preserved before 1.8 Ma if chondrules formed by the impacts of molten planetesimals.

A RECORD OF LOW-TEMPERATURE ASTEROIDAL PROCESSES OF AMOEBOID OLIVINE AGGREGATES FROM THE KAINSAZ CO3.2 CHONDRITE

1,2,3Jangmi Han,4Changkun Park,1Adrian J.Brearley
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2022.02.007]
1Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
2Lunar and Planetary Institute, USRA, 3600 Bay Area Boulevard, Houston, TX 77058, USA
3Astromaterials Research and Exploration Science, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA
4Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
Copyright Elsevier

Amoeboid olivine aggregates (AOAs) from the Kainsaz CO3.2 chondrite were analyzed using transmission electron microscopy in order to gain a more complete understanding of thermal metamorphism on the parent body and the role of fluids during metamorphic heating. The Kainsaz AOAs are dominated by strongly zoned, fine-grained, olivine grains (Fa2-31) with heterogeneous Fe enrichments along the grain boundaries, which are interpreted as the result of Fe2+-Mg2+ interdiffusion with the matrix during thermal metamorphism. However, our diffusion calculations show that such AOA olivine zoning and compositions cannot be produced by a simple diffusional exchange during metamorphic heating, unlike chondrule olivine zoning and compositions. In addition, fine-grained ferroan olivine overgrowths occur heterogeneously in crystallographic continuity with olivines on the AOA exteriors. The overgrowths (Fa33-36) are compositionally distinct from the underlying AOA olivines and are not fully equilibrated with the matrix olivines (Fa∼20-55). The ferroan olivine overgrowths likely formed by precipitation from fluids in an epitaxial relationship with forsteritic olivine on the edges of AOAs. Texturally and compositionally diverse chromite grains are also observed along olivine grain boundaries, in olivine grains, and in pore spaces between olivine grains. They share a similar crystallographic orientation relationships with adjacent olivine, suggestive of their formation by exsolution and/or epitaxial growth. Collectively, these observations provide evidence for the mobilization of Fe, Mg, Si, Cr, and Al in the presence of fluids along olivine grain boundaries and into olivine grains during thermal metamorphism. We conclude that in Kainsaz AOAs, the strong zonation development in individual olivine grains and the formation of ferroan olivine overgrowths and chromite grains were a fluid-driven process that occurred at relatively low temperatures (<500℃), during the cooling history of the CO3 chondrite parent body, following the peak of thermal metamorphism.