Nanoscale mineralogy and organic structure in Orgueil (CI) and EET 92042 (CR) carbonaceous chondrites studied with AFM-IR spectroscopy

1Van T. H. Phan,1Rolando Rebois,1Pierre Beck,1Eric Quirico,1Lydie Bonal,2Takaaki Noguchi
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13773]
1Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes/CNRS-INSU, UMR 5274, Grenoble, F-38041 France
2Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
Published by arrangement with John Wiley & Sons

Meteorite matrices from primitive chondrites are an interplay of ingredients at the sub-µm scale, which requires analytical techniques with the nanometer spatial resolution to decipher the composition of individual components in their petrographic context. Infrared spectroscopy is an effective method that enables the probing of vibrations at the molecule atomic scale of organic and inorganic compounds but is often limited to a few micrometers in spatial resolution. To efficiently distinguish spectral signatures of the different constituents, we apply here nano-infrared spectroscopy (AFM-IR), based on the combination of infrared and atomic force microscopy, having a spatial resolution beyond the diffraction limits. Our study aims to characterize two chosen meteorite samples to investigate primitive material in terms of bulk chemistry (the CI chondrite Orgueil) and organic composition (the CR chondrite EET 92042). We confirm that this technique allows unmixing the IR signatures of organics and minerals to assess the variability of organic structure within these samples. We report an investigation of the impact of the widely used chemical HF/HCl (hydrogen fluoride/hydrochloric acid) extraction on the nature of refractory organics (insoluble organic matter [IOM]) and provide insights on the mineralogy of meteorite matrices from these two samples by comparing to reference (extra)terrestrial materials. These findings are discussed with a perspective toward understanding the impact of post-accretional aqueous alteration and thermal metamorphism on the composition of chondrites. Last, we highlight that the heterogeneity of organic matter within meteoritic materials extends down to the nanoscale, and by comparison with IOMs, oxygenated chemical groups are not affected by acid extractions.

Constraints on the formation of carbonates and low-grade metamorphic phases in the Martian crust as a function of H2O-CO2 fluids

1,2Julia Semprich,2,3Justin Filiberto,2Allan H. Treiman,1Susanne P. Schwenzer
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13775]
1AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
2Lunar and Planetary Institute, USRA, 3600 Bay Area Blvd, Houston, Texas, 77058 USA
3Astromaterials Research and Exploration Science (ARES) Division, XI3, NASA Johnson Space Center, Houston, Texas, 77058 USA
Published by arrangement with John Wiley & Sons

Low-grade metamorphic hydrous minerals and carbonates occur in various settings on Mars and in Martian meteorites. We present constraints on the stability of prehnite, zeolites, serpentine, and carbonates by modeling the influence of H2O-CO2 fluids during low-grade metamorphism in the Martian crust using compositions of a Martian basalt and an ultramafic cumulate. In basaltic compositions with 5 wt% fluid, our models predict prehnite in less oxidized, CO2-poor conditions (≤0.44 mol kg−1 CO2) on warmer geotherms of 20 °C km−1. At fluid-saturated conditions, epidote and laumontite are replaced by quartz, calcite, chlorite, and muscovite. In ultramafic compositions with 5 wt% fluid, antigorite (serpentine) is stable at CO2-poor conditions of ≤0.33 mol kg−1, while talc forms at 0.05–0.56 mol kg−1 CO2. At fluid-saturated conditions, antigorite is replaced by talc and chlorite, and at higher X(CO2) by magnesite and quartz. Our models therefore suggest that prehnite, zeolites, and serpentine have formed in a CO2-poor environment on Mars implying that fluids during their formation either did not contain high amounts of CO2 or had degassed CO2. Carbonates and potentially talc would have formed in the presence of a CO2-bearing fluid and therefore at different alteration stages than for prehnite, zeolites, and serpentine either in the same hydrothermal event during which the fluid composition changed gradually due to cooling and precipitation or by separate and successive alteration events with fluids of different compositions.