1Alan E.Rubin
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13693]
1Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, 90095–1567 USA
2Maine Mineral & Gem Museum, 99 Main Street, P.O. Box 500, Bethel, Maine, 04217 USAM
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13693]
Published by arrangement with John Wiley & Sons
IIE irons were derived from chondritic precursors that were the most reduced ordinary chondrites. The bulk chemical (e.g., Ir/Ni, Ir/Au, Au/Ni, Co/Ni) and bulk isotopic (i.e., Δ17O and δ74/70Ge) compositions of IIE irons lie along extensions of LL-L-H trends. Chondrule-bearing silicate clasts in IIE irons have mineralogical and petrological characteristics that extend LL-L-H trends; these clasts have higher modal metallic Fe-Ni and lower values for olivine Fa, low-Ca-pyroxene Fs, kamacite Co, and mean chondrule diameter. IIE irons are modeled as agglomerating before H-L-LL chondrites; they acquired more 26Al and reached the Fe,Ni-FeS eutectic temperature (˜940 °C). An FeS-rich metallic melt separated from unmelted silicate and drained to the core, eventually generating a dynamo. Most IIE metal remained within the crust/mantle region alongside recrystallized chondritic clasts. Alkali-rich IIE silicate inclusions formed from late-stage impacts via preferential melting of plagioclase. Some separation of K from Na occurred during vapor transport. Because most type I chondrules formed before most type II chondrules, the (type I)/(type II) modal ratio decreased from IIE to H to L to LL during agglomeration. Earlier-formed chondrules acquired higher abundances of refractory metal nuggets within CAI-fragment precursors, accounting for systematic changes in bulk OC of refractory/common siderophile and refractory/volatile siderophile ratios (IIE>H>L>LL). Because more Au and Co than Ni were retained in silicates, loss of metal globules from spinning partly molten type I chondrules caused systematic whole-rock decreases in Au/Ni and Co/Ni from IIE through LL. Expelled globules had different nebular aerodynamic properties than chondrules and drifted away (accounting, in part, for the metal/silicate fractionation).
Day: July 20, 2021
The Ca isotope composition of mare basalts as a probe into the heterogeneous lunar mantle
1Martijn Klaver,1,2Tu-Han Luu,1Jamie Lewis,3Maximiliaan N.Jansen,4Mahesh Anand,5Johannes Schwieters,1Tim Elliott
Earth and Planetary Science Letters 570, 117079 Link to Article [https://doi.org/10.1016/j.epsl.2021.117079]
1Bristol Isotope Group, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom
2Université de Paris, Institut de Physique du Globe de Paris. CNRS, F-75005 Paris, France
3School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
4School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
5Thermo-Fisher Scientific, Hannah-Kunath Strasse, Bremen, Germany
Copyright Elsevier
The Ca isotope compositions of mare basalts offer a novel insight into the heterogeneous nature of the lunar mantle. We present new high-precision Ca isotope data for a suite of low-Ti and high-Ti mare basalts obtained using our collision cell MC-ICP-MS/MS instrument, Proteus. Mare basalts were found to have a Ca isotope composition resembling terrestrial basalts (δ44/40CaSRM 915a =0.78–0.89‰) even though they are derived from a differentiated, refractory cumulate mantle source. Modelling of Ca isotope fractionation during crystallisation of a lunar magma ocean (LMO) indicates that the dominantly harzburgitic cumulates of the lunar interior should be isotopically heavier than Earth’s mantle (δ44/40CaSRM 915a =1.1–1.2‰ versus 0.93‰, respectively). These are balanced by an isotopically light lunar anorthosite crust, consistent with data for lunar anorthosite and feldspathic breccia meteorites.
We investigate the major element and Ca isotope composition of partial melts of various cumulate reservoirs by combining pMELTS models with equilibrium isotope fractionation mass balance calculations. The principal finding is that harzburgite cumulates alone are too refractory a source to produce low-Ti magmas. Partial melts of harzburgite cumulates have too low CaO contents, too high Al2O3/CaO and too high δ44/40CaSRM 915a to resemble low-Ti magmas. From Ca isotope constraints, we find that the addition of 10–15% of late-stage, clinopyroxenite cumulates crystallising at 95% LMO solidification is required to produce a suitable source that can generate low-Ti basalt compositions. Despite the addition of such late-stage cumulates pMELTS finds that these hybrid sources are undersaturated in clinopyroxene and are thus consistent with experimental constraints that the mantle sources of the lunar magmas are clinopyroxene-free. High-Ti basalts have slightly lower δ44/40CaSRM 915a (0.80–0.86‰) than low-Ti magmas (0.85–0.89‰) and clearly elevated TiO2/CaO. No suitable hybrid source involving ilmenite-bearing cumulates (IBC) was found that could reproduce melts with appropriate δ44/40Ca and major element systematics. Instead, we suggest that metasomatism of low-Ti mantle sources by IBC melts is the most plausible way to generate high-Ti magma sources and the rich diversity in TiO2 contents of lunar basalts and pyroclastic glasses.
Constraints on the origins of iron silicide spherules in ultrahigh-temperature distal impact ejecta
1Sergei Batovrin,1Boris Lipovsky,2Yury Gulbin,3Yury Pushkarev,3Yury A. Shukolyukov
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13662]
1Independent Researcher, 120 Casals Place, Bronx, New York, 10475 USA
2The Mining Institute of St. Petersburg, Vasilevsky ostrov, 21 Liniya, Dom 2, St. Petersburg, 199106 Russia
3Institute of Geology and Geochronology of Precambrian, RAS, Naberezhnaya Makarova 2, St. Petersburg, 199034 Russia
Published by arrangement with John Wiley & Sons
Terrestrially occurring iron silicide spherules, described in the geological literature for 160 years as cosmogenic and approved as “extraterrestrial” minerals by IMA CNMMN in 1984, so far have escaped any serious examination by meteoriticists. Our isotopic and REE data, obtained for silicide spherules for the first time, disagree with the meteoritic origin of gupeiite (Fe3Si) and xifengite (Fe5Si3) spherules from two continents. Despite departures from terrestrial norms (87Rb/86Sr—0.0174; 87Sr/86Sr—0.700181; 3He/4He—7.57 × 10−6; 40Ar/36Ar—325.9), the compositions of 143Nd/144Nd (0.512034) and 147Sm/144Nd (0.06357), as well as REE abundances, clarify provenance from upper crust sediments for samples with U/Pb age of 121–314 ka from the Ala-Tau range in the Urals. However, the morphology of flanged button shapes, ring waves, and eccentro-radiating ridges reliably constrains the origin of silicide spherules to distal meteoritic impact ejecta. Arc jet ablation experiments have previously demonstrated that similar morphologies, observed on australite tektites, reflect aerodynamic ablation rates corresponding to flight velocities well into orbital range. These features are generally accepted as conclusive evidence for hypervelocity atmospheric entry from space. Internal structure, consistent with accretion through the coalescence of 3–5 µm droplets, and composition, closely corresponding to 1893–1154 K span of C-type condensation sequences, indicate a high probability of processing through recondensation of ejecta vapor.