1M. Arif,2Saumitra Misra
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13643]
1Indian Institute of Geomagnetism, Navi Mumbai, 410218 India
2Discipline of Geological Sciences, SAEES, University of KwaZulu‐Natal, Durban, 4000 South Africa
Published by arrangement with John Wiley & Sons
The continuous ejecta deposit around the rim of Lonar impact crater, central India, contains angular basaltic boulders of size ≤5 m. These boulders experienced varying level of shock between 2–30 GPa due to impact, as indicated by the extreme fracturing of these basaltic boulders, fragmentation of plagioclase and titanomagnetite constituents of these ejected boulders, and the presence of maskelynite in them. We measure some rock magnetic properties, e.g., NRM/χ (natural remanent magnetization [NRM]/bulk magnetic susceptibility [χ]), REM (=NRM/saturation isothermal remanent magnetization [SIRM] ratio expressed in %), and anisotropy of magnetic susceptibility (AMS) on 53 subsamples from 18 oriented drill cores of the shocked ejected basaltic boulders from the eastern half of ejecta deposit in the present study. The measured data are similar in many respects to our previous observations on Lonar crater rim shocked basalts (Arif et al. 2012b). For example, a small population of the ejected basaltic boulder samples show very high NRM/χ (between 378 and 989 Am−1; n = 7) and REM (between 1.5 and 7%; n = 4) and the AMS axes of these ejected basaltic boulders show triaxial distributions in stereographic projections. Moreover, some of the ejected basaltic boulders show higher values of squareness ratio (Mrs/Ms) and median destructive field (MDF) suggesting permanent changes in the intrinsic magnetic properties due to impact shock pressure. In stereographic plot, the high coercivity and high temperature (HC_HT) magnetization component of these ejected basaltic boulders are distributed in discrete clusters on the periphery of a small enveloping circle whose center (D = 108.0°, I = +69.2°) lies close to the HC_HT cluster of the crater rim shocked basalts. The center of this enveloping circle and the average HC_HT component of Lonar crater rim shocked basalts have the same statistical orientation, although the former has steeper dip. This distribution suggests the possibility that the ejected basaltic boulders, which were deposited during the modification stage of Lonar crater evolution, were magnetized in an impact‐induced magnetic field that was rapidly decaying just after the impact. Our present study suggests that the ejected basaltic boulders and Lonar crater rim shocked basalts experienced high shock pressure (≥2 GPa) magnetization during impact.
Day: March 22, 2021
The lunar Dhofar 1436 meteorite: 40Ar‐39Ar chronology and volatiles, revealed by stepwise combustion and crushing methods
1,2Ekaterina V. Korochantseva,1Alexei I. Buikin,1Jens Hopp,3Alexander B. Verchovsky,1Alexander V. Korochantsev,3,4Mahesh Anand,1Mario Trieloff
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13632]
1Institut für Geowissenschaften, Klaus‐Tschira‐Labor für Kosmochemie, Universität Heidelberg, Im Neuenheimer Feld 234‐236, 69120 Heidelberg, Germany
2Vernadsky Institute of Geochemistry, Kosygin St. 19, 119991 Moscow, Russia
3School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA UK
4Department of Earth Sciences, The Natural History Museum, London, SW7 5BD UK
Published by arrangement with John Wiley & Sons
The lunar meteorite Dhofar 1436 is dominated by solar wind type noble gases. Solar argon is equilibrated with “parentless” 40Ar commonly known as lunar orphan argon. Ar‐Ar isochron analyses determined the lunar trapped 40Ar/36Ar ratio to 2.51 ± 0.04, yielding a corrected plateau age of 4.1 ± 0.1 Ga, consistent with the lunar Late Heavy Bombardment period. Lunar trapped and radiogenic argon components are all released at high temperatures (1200–1400 °C). Surprisingly, solar noble gases and lunar trapped argon can largely be released by crushing. Initial crushing steps mainly release elementally fractionated solar wind gases, while in advanced crushing steps, cosmogenic components dominate. Cosmogenic noble gases indicate irradiation at the lunar surface; they are less fractionated than solar wind species. We favor a scenario in which both solar and a large fraction of cosmogenic gases were acquired before the 4.1 Ga event, which caused shock metamorphism and formation of the regolith breccia. Sintering and agglutination along grain boundaries resulted in mobilization of solar wind, reimplanted, radiogenic, and cosmogenic noble gases, and resulted in their partial homogenization, fractionation, and retrapping in voids and/or defects accessible by crushing. An alternative scenario would be complete reset of the K‐Ar system 4.1 Ga ago accompanied by loss of all previously accumulated solar and cosmogenic noble gases. Later, the precursor of Dhofar 1436 became lunar regolith and accumulated solar and cosmogenic noble gases and reimplanted 40Ar before its final formation of the polymict impact breccia. The C abundance of the step‐combusted Dhofar 1436 is 555.3 ppm, with δ13C of −28‰ to +11‰. Nitrogen contents released by crushing and combustion are 3.2 ppm and 20.8 ppm, respectively. The lightest nitrogen composition (δ15N = −79‰) is likely due to release from voids of shock metamorphic phases and is rather a result of the mobilization of nitrogen components that accumulated prior to the 4.1 Ga event.