1T.Ootsubo,1H.Kawakita,22Y.Shinnaka
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2021.114425]
1National Astronomical Observatory of, Japan
2Koyama Astronomical Observatory, Kyoto, Sangyo Univ., Japan
Copyright Elsevier
We present mid-infrared observations of comet P/2016 BA14 (PANSTARRS), which were obtained on UT 2016 March 21.3 at heliocentric and geocentric distances of 1.012 au and 0.026 au, respectively, approximately 30 h before its closest approach to Earth (0.024 au) on UT 2016 March 22.6. Low-resolution (λ/Δλ ~ 250) spectroscopic observations in the N-band and imaging observations with four narrow-band filters (centered at 8.8, 12.4, 17.7 and 18.8 μm) in the N- and Q-bands were obtained using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) mounted on the 8.2-m Subaru telescope atop Maunakea, Hawaii. The observed spatial profiles of P/2016 BA14 at different wavelengths are consistent with a point-spread function. Owing to the close approach of the comet to the Earth, the observed thermal emission from the comet is dominated by the thermal emission from its nucleus rather than its dust coma. The observed spectral energy distribution of the nucleus at mid-infrared wavelengths is consistent with a Planck function at temperature T ~ 350 K, with the effective diameter of P/2016 BA14 estimated as ~0.8 km (by assuming an emissivity of 0.97). The normalized emissivity spectrum of the comet exhibits absorption-like features that are not reproduced by the anhydrous minerals typically found in cometary dust coma, such as olivine and pyroxene. Instead, the spectral features suggest the presence of large grains of phyllosilicate minerals and organic materials. Thus, our observations indicate that an inactive small body covered with these processed materials is a possible end state of comets.
Day: March 16, 2021
Reflectance spectroscopy of ilmenites and related Ti and Tisingle bondFe oxides (200 to 2500 nm): Spectral–compositional–structural relationships
1Matthew R.M.Izawa,2Daniel M.Applin,3Matthew Q.Morison,1Edward A.Cloutis,1Paul Mann,4Stanley A.Mertzman
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2021.114423]
1Institute for Planetary Materials, Okayama University, 827 Yamada, Misasa, Tottori 682-0193, Japan
2Department of Geography, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
3Department of Geography, University of Waterloo, Waterloo, Ontario N2L 2B5, Canada
4Department of Earth and Environment, Franklin and Marshall College, Lancaster, PA 17604, USA
Copyright Elsevier
Ilmenite is an important mineral for understanding lunar evolution. Ilmenite is also a primary ore of titanium on the Earth. Here we present a comprehensive examination of the spectral-compositional-structural relationships of ilmenites and related Fesingle bondTi oxides. Ilmenite spectral features of interest include maxima near ~250 nm (due Ti4+-O and Fe2+-O charge transfers), ~335 nm (due to Fe2+-Ti4+ charge transfer), and 950 nm (interband maximum), and absorption features near ~540 nm (due to Fe2+-Ti4+ charge transfers), ~630 nm (due to Ti3+-Ti4+ charge transfers), and a ~ 1300/1600 nm absorption doublet (due to Fe2+ crystal field transitions). Absorption features transition from Fresnel peaks to valley around 400 nm, as absorption coefficients decrease toward longer wavelengths. Ilmenite powders are generally darkest and show the greatest spectral contrast and reflectance rise beyond ~1300 nm for the smallest grain sizes. Other Ti and Fesingle bondTi oxides share some spectral properties with ilmenites but also exhibit many differences. The most common feature they share is a rise in reflectance toward shorter wavelengths below ~500 nm (i.e., blue spectral slope). Ti ± Fe oxide spectra can also exhibit absorption features attributable to Ti, Fe, and Ti ± Fe, and these features vary in intensity, shape and wavelength position due to factors such as Ti and Fe oxidation states, coordination environment, and nearest neighbor cation types. Ilmenite differs most from silicates in the region below ~500 nm: it shows a reflectance increase versus decrease toward shorter wavelengths for silicates, as well as diagnostic Ti/Ti-Fe maxima or minima. Thus, detection of ilmenite in mixtures is best accomplished by including the UV region in spectral analysis. With increasing ilmenite in mixtures, its diagnostic spectral features become increasingly apparent.
Hydrogen abundance estimation and distribution on (101955) Bennu
1A.Praet et al. (>10)
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2021.114427]
1LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, 5 place Jules Janssen, 92195 Meudon, France
Copyright Elsevier
Asteroids were likely a major source of volatiles and water to early Earth. Quantifying the hydration of asteroids is necessary to constrain models of the formation and evolution of the Solar System and the origin of Life on Earth. The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission showed that near-Earth asteroid (101955) Bennu contains widespread, abundant hydrated phyllosilicates, indicated by a ubiquitous absorption at ~ 2.7 μm. The objective of this work is to quantify the hydration—that is, the hydrogen content—of phyllosilicates on Bennu’s surface and investigate how this hydration varies spatially. We analyse spectral parameters (normalized optical path length, NOPL; effective single-scattering albedo, ESPAT; and Gaussian modeling) computed from the hydrated phyllosilicate absorption band of spatially resolved visible–near-infrared spectra acquired by OVIRS (the OSIRIS-REx Visible and InfraRed Spectrometer). We also computed the same spectral parameters using laboratory-measured spectra of meteorites including CMs, CIs, and the ungrouped C2 Tagish Lake. We estimate the mean hydrogen content of water and hydroxyl groups in hydrated phyllosilicates on Bennu’s surface to be 0.71 ± 0.16 wt%. This value is consistent with the hydration range of some aqueously altered meteorites (CMs, C2 Tagish Lake), but not the most aqueously altered group (CIs). The sample collection site of the OSIRIS-REx mission has slightly higher hydrogen content than average. Spatial variations in hydrogen content on Bennu’s surface are linked to geomorphology, and may have been partially inherited from its parent body.