Oxygen isotope systematics of chondrules in the Paris CM2 chondrite: indication for a single large formation region across snow line

1,2Noël Chaumard,1,3Céline Defouilloy,1,4Andreas T.Hertwig,1Noriko T.Kita
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2021.02.012]
1WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, 1215 W. Dayton Street, Madison, WI 53706-1692, USA
2Fi Group, Direction scientifique, 14 terrasse Bellini, 92800 Puteaux, France
3CAMECA, 29 quai des Grésillons, 92622 Gennevilliers Cedex, France
4Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany
Copyright Elsevier

In-situ oxygen three-isotope analyses of chondrules and isolated olivine grains in the Paris (CM) chondrite were conducted by secondary ion mass spectrometry (SIMS). Multiple analyses of olivine and/or pyroxene in each chondrule show indistinguishable Δ17O values, except for minor occurrences of relict olivine grains (and one low-Ca pyroxene). A mean Δ17O value of these homogeneous multiple analyses was obtained for each chondrule, which represent oxygen isotope ratios of the chondrule melt. The Δ17O values of individual chondrules range from –7‰ to –2‰ and generally increase with decreasing Mg# of olivine and pyroxene in individual chondrules. Most type I (FeO-poor) chondrules have high Mg# (∼99) and variable Δ17O values from –7.0‰ to –3.3‰. Other type I chondrules (Mg# ≤97), type II (FeO-rich) chondrules, and two isolated FeO-rich olivine grains have host Δ17O values from –3‰ to –2‰. Eight chondrules contain relict grains that are either 16O-rich or 16O-poor relative to their host chondrule and show a wide range of Δ17O values from –13‰ to 0‰.

The results from chondrules in the Paris meteorite are similar to those in Murchison (CM). Collectively, the Δ17O values of chondrules in CM chondrites continuously increase from –7‰ to –2‰ with decreasing Mg# from 99 to 37. The majority of type I chondrules (Mg# >98) show Δ17O values from –6‰ to –4‰, while the majority of and type II chondrules (Mg# 60-70) show Δ17O values of –2.5‰. The covariation of Δ17O versus Mg# observed among chondrules in CM chondrites may suggest that most chondrules in carbonaceous chondrites formed in a single large region across the snow line where the contribution of 16O-poor ice to chondrule precursors and dust enrichment factors varied significantly.

Thermal alteration of CM carbonaceous chondrites: Mineralogical changes and metamorphic temperatures

1,2A.J.King,1P.F.Schofield,1S.S.Russell
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2021.02.011]
1Planetary Materials Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
2School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
Copyright Elsevier

The CM carbonaceous chondrite meteorites provide a record of low temperature (<150 °C) aqueous reactions in the early solar system. A number of CM chondrites also experienced short-lived, post-hydration thermal metamorphism at temperatures of ∼200 °C to >750 °C. The exact conditions of thermal metamorphism and the relationship between the unheated and heated CM chondrites are not well constrained but are crucial to understanding the formation and evolution of hydrous asteroids. Here we have used position-sensitive-detector X-ray diffraction (PSD-XRD), thermogravimetric analysis (TGA) and transmission infrared (IR) spectroscopy to characterise the mineralogy and water contents of 14 heated CM and ungrouped carbonaceous chondrites. We show that heated CM chondrites underwent the same degree of aqueous alteration as the unheated CMs, however upon thermal metamorphism their mineralogy initially (300–500 °C) changed from hydrated phyllosilicates to a dehydrated amorphous phyllosilicate phase. At higher temperatures (>500 °C) we observe recrystallisation of olivine and Fe-sulphides and the formation of metal. Thermal metamorphism also caused the water contents of heated CM chondrites to decrease from ∼13 wt% to ∼3 wt% and a subsequent reduction in the intensity of the 3 μm feature in IR spectra. We estimate that the heated CM chondrites have lost ∼15 – >65% of the water they contained at the end of aqueous alteration. If impacts were the main cause of metamorphism, this is consistent with shock pressures of ∼20–50 GPa. However, not all heated CM chondrites retain shock features suggesting that some were instead heated by solar radiation. Evidence from the Hayabusa2 and ORSIRS-REx missions suggest that dehydrated materials may be common on the surfaces of primitive asteroids and our results will support upcoming analysis of samples returned from asteroids Ryugu and Bennu.