The aqueous alteration of CM chondrites, a review

1M.D.Suttle,1,2A.J.King,1P.F.Schofield,1,3H.Bates,1S.S.Russell
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2021.01.014]
1Planetary Materials Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
2Planetary and Space Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K
3Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, UK
Copyright Elsevier

The CM chondrites are samples of primitive water-rich asteroids formed during the early solar system. They record significant interaction between liquid water and silicate rock, resulting in a mineralogy dominated by hydrated secondary phases. Their similarity to the near-Earth asteroids Bennu and Ryugu – targets of current sample return space missions – makes the analysis of CM chondrites essential to the interpretation of these enigmatic bodies. Here, we review the aqueous alteration history of the CM chondrite group.

Initially, amorphous silicate, metal and sulphides within the matrix were converted into Fe-cronstedtite and tochilinite. Later, the serpentinization of refractory coarse-grained inclusions led to the addition of Mg to the fluid phase. This is reflected in the cation composition of secondary phases which evolved from Fe-rich to Mg-rich. Although most CM meteorites are classified as CM2 chondrites and retain some unaltered anhydrous silicates, a few completely altered CM1s exist (∼4.2% [Meteoritical Bulletin, 2021]).

The extent of aqueous alteration can be quantified through various techniques, all of which trace the progression of secondary mineralization. Early attempts employed petrographic criteria to assign subtypes – most notably the Browning and Rubin scales have been widely adopted. Alternatively, bulk techniques evaluate alteration either by measuring the ratio of phyllosilicate to anhydrous silicate (this can be with X-ray diffraction [XRD] or infrared spectroscopy [IR]) or by measuring the combined H abundance/δD compositions. The degree of aqueous alteration appears to correlate with petrofabric strength (most likely arising due to shock deformation). This indicates that aqueous alteration may have been driven primarily by impact rather than by radiogenic heating. Alteration extent and bulk O-isotope compositions show a complex relationship. Among CM2 chondrites higher initial water contents correspond to more advanced alteration. However, the CM1s have lighter-than-expected bulk compositions. Although further analyses are needed these findings could suggest either differences in alteration conditions or initial isotopic compositions – the latter scenario implies that the CM1 chondrites formed on a separate asteroid from the CM2 chondrites.

Secondary phases (primarily calcite) act as proxies for the conditions of aqueous alteration and demonstrate that alteration was prograde, with an early period at low temperatures (<70°C), while later alteration operated at higher temperatures of 100-250°C. Estimates for the initial water-to-rock ratios (W/R) vary between 0.2-0.7. They are based either on isotopic mass balance or mineral stoichiometry calculations – variability reflects uncertainties in the primordial water and protolith compositions and whether alteration was open or closed system. Some CM chondrites (<36%) experienced a later episode of post-hydration thermal metamorphism, enduring peak temperatures <900°C and resulting in a dehydrated mineralogy and depleted volatile element abundances. Heating was likely short-duration and caused by impact events. The presence of CM chondrite material embedded in other meteorites, their prominence among the micrometeorite flux and the link between CMs and rubble-pile C-type near-Earth asteroids (e.g. Bennu and Ryugu) implies that the CM parent body was disrupted, leaving second-generation CM asteroids to supply material to Earth.

Optical constants and diffuse reflectance of opaque minerals: A modeling study using magnetite

1Ted L.Roush,1,2Luis F.A.Teodoro,3David T.Blewett,3Joshua T.S.Cahill
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2021.114331]
1NASA Ames Research Center, Planetary Systems Branch, MS 245-3, Moffett Field, CA 94035-0001, USA
2Bay Area Environmental Research Institute, P.O. Box 25, Moffett Field, CA 94035-0001, USA
3Planetary Exploration Group, Johns Hopkins University Applied Physics Laboratory, MS 200-W2320, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA
Copyright Elsevier

We use radiative transfer (RT) models, based upon the Hapke (1993) model, to estimate the imaginary refractive index of magnetite from laboratory reflectance measurements. We used a RT program coupled with a least-squares algorithm to fit measured reflectance data using complex refractive indices of magnetite estimated here and literature values. We included differing representations of the grain size distribution for modeling the measured reflectance of the magnetite samples. Best-fitting models were obtained when using the complex indices of refraction estimated from a specific grain size fraction to fit the same grain size of reflectance data. Magnetite complex refractive indices taken from reported literature studies resulted in the poorest fits to the measured reflectance data.

We investigated the multiple-scattering behavior of magnetite using Fresnel’s equation and complex refractive indices from literature values and our own estimates. For both we found the reflection coefficient is <1% after four reflections suggesting that multiple scattering is minimal. We also calculated the transmission via the Beer-Lambert law using the same sets of refractive indices. For both, the initial interface transmission had a comparable value near 80%. However, as the distance through the material increases the discrepancy between the two refractive indices had substantial influence. For the literature values the transmission was reduced to <1% after a distance of 8 μm at all wavelengths, whereas for the estimated values the transmission remained ≥75% at this distance. Magnetite, when viewed in a petrographic thin section (~30 μm thick), is opaque. This suggests that the optical constants estimated via the Hapke approach are not realistic. We compared the calculated Fresnel reflectance using one literature value to the measured reflectances and found that the overall spectral shape was similar to the magnetite diffuse reflectance measurements. However, the magnetite diffuse reflectance is only 30–40% of the calculated Fresnel reflectance. We speculate this may be due to the granular surfaces scattering light into a non-specular angle. Hapke-like models have been successfully applied for estimating optical constants of transparent materials. However, the present study finds that such models may not be appropriate for determining the optical constants of low-reflectance, opaque materials, as the results are not comparable to values of optical constants reported in the literature.