Meteorite potůčky (Steinbach): History and new finds (Czech Republic) [Meteorit potůčky (Steinbach): historie a nové nálezy (Česká Republika)]

1,2Pauliš, P.,3Černý, D.,4Malý, T.,2Dolníček, Z.,5Bohatý, M.,2Ulmanová, J.,6Pour, O.,7Plášil, J.,8Malina, O.,6Bohdálek, P.,9Sýkora, I.,9Povinec, P.P.
Bulletin Mineralogie Petrologie 28, 179-202 Link to Article [DOI: 10.46861/bmp.28.179]
1Smíškova 564, Kutná Hora, 284 01, Czech Republic
2Mineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, Praha 9-Horní Počernice, 193 00, Czech Republic
3Merklín 23, Merklín, 362 34, Czech Republic
4Matouškova 265, Rovensko pod Troskami, 512 63, Czech Republic
5Radnická 7, Brno, 602 00, Czech Republic
6Česká geologická služba, Geologická 6, Praha 5, 152 00, Czech Republic
7Fyzikální ústav AV ČR v.v.i., Na Slovance 2, Praha 8, 182 21, Czech Republic
8Národní památkový ústav, územní odborné pracoviště v Lokti, Kostelní 81/25, Loket, 357 33, Czech Republic
9Katedra jadrovej fyziky a biofyziky, Fakulta matematiky, fyziky a informatiky, Univerzita Komenského, Bratislava, 842 48, Slovakia

We currently do not have a copyright agreement with this publisher and cannot display the abstract here

The spatial flux of Earth’s meteorite falls found via Antarctic data

1Evatt, G.W.,1Smedley, A.R.D.,2Joy, K.H.,1Hunter, L.,3Tey, W.H.,1,4Abrahams, I.D.,5Gerrish, L.
Geology 48, 683-687 Link to Article [DOI: 10.1130/G46733.1]
1Department of Mathematics, University of Manchester, Manchester, M13 9PL, United Kingdom
2Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom
3Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
4Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0EH, United Kingdom
5British Antarctic Survey, Cambridge, CB3 0ET, United Kingdom

We currently do not have a copyright agreement with this publisher and cannot display the abstract here

The internal structure and geodynamics of Mars inferred from a 4.2-Gyr zircon record

1Maria M. Costa et al. (>10)
Proceeedings of the National Academy of Sciences of the Unted States of America (in Press) Link to Article [DOI:
https://doi.org/10.1073/pnas.2016326117]
1Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark

Combining U–Pb ages with Lu–Hf data in zircon provides insights into the magmatic history of rocky planets. The Northwest Africa (NWA) 7034/7533 meteorites are samples of the southern highlands of Mars containing zircon with ages as old as 4476.3 ± 0.9 Ma, interpreted to reflect reworking of the primordial Martian crust by impacts. We extracted a statistically significant zircon population (n = 57) from NWA 7533 that defines a temporal record spanning 4.2 Gyr. Ancient zircons record ages from 4485.5 ± 2.2 Ma to 4331.0 ± 1.4 Ma, defining a bimodal distribution with groupings at 4474 ± 10 Ma and 4442 ± 17 Ma. We interpret these to represent intense bombardment episodes at the planet’s surface, possibly triggered by the early migration of gas giant planets. The unradiogenic initial Hf-isotope composition of these zircons establishes that Mars’s igneous activity prior to ∼4.3 Ga was limited to impact-related reworking of a chemically enriched, primordial crust. A group of younger detrital zircons record ages from 1548.0 ± 8.8 Ma to 299.5 ± 0.6 Ma. The only plausible sources for these grains are the temporally associated Elysium and Tharsis volcanic provinces that are the expressions of deep-seated mantle plumes. The chondritic-like Hf-isotope compositions of these zircons require the existence of a primitive and convecting mantle reservoir, indicating that Mars has been in a stagnant-lid tectonic regime for most of its history. Our results imply that zircon is ubiquitous on the Martian surface, providing a faithful record of the planet’s magmatic history.