Metal grains in lunar rocks as indicators of igneous and impact processes

1James M. D. Day
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13544]
1Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093 USA
Published by arrangement with John Wiley & Sons

Anhedral metal grains of >micrometer size occur in many lunar rock types, including mare basalts, magnesian suite rocks (MGS), ferroan anorthosites (FAN), and impact melt rocks and breccias. Some metal grains are inherited from, or modified by, impactors striking the Moon into crustal materials. These grains have high Ni/Co resulting from the addition of chondritic or iron impactors. Metal grains in mare basalts, FAN, and MGS have Ni/Co ranging from >20 to <1, being generally distinct from impactor compositions. Nickel and Co behave as compatible elements in lunar melts, with parental melts having between ~40–50 ppm Co, ~40–60 ppm Ni, and Ni/Co ~1. These compositions suggest a bulk silicate Moon (BSM) with Ni some three times lower than in bulk silicate Earth. Modeling of Ni and Co during fractional crystallization of mafic mare basalt parental melts originating from a BSM source predicts high Ni/Co metals form during early olivine fractionation. The combined effects of pyroxene ± plagioclase crystallization and increasing but variable compatibility of Ni and Co during basaltic melt evolution can explain the generation of low Ni/Co metals in more differentiated mare basalts. High‐Ti mare basalts have metal with low Ni/Co, but the crystallization of ilmenite and armalcoite restricts the range of Ni and Co in metal. Collectively, these results are consistent with metal grains in mare basalts forming solely through endogenous processes. Measurement of metal grains represents a rapid way for determining endogenous (e.g., lunar interior melts) versus exogenous (e.g., impact contamination) processes acting on lunar samples. In turn, the presence of low Ni/Co metal grains in mare basalts supports their origin as uncontaminated partial melts originating from lunar mantle sources that may have experienced loss of Ni to a small lunar core.

Kinetics in thermal evolution of Raman spectra of chondritic organic matter to evaluate thermal history of their parent bodies

1Kento Kiryu,1Yoko Kebukawa,2Motoko Igisu,2Takazo Shibuya,3Michael E. Zolensky,1Kensei Kobayashi
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13548]
1Graduate School of Engineering Science, Yokohama National University, 79‐5 Tokiwadai, Hodogaya‐ku, Yokohama, 240‐8501 Japan
2Super‐cutting‐edge Grand and Advanced Research (Sugar) Program, Institute for Extra‐cutting‐edge Science and Technology Avant‐garde Research (X‐star), Japan Agency for Marine‐Earth Science and Technology (JAMSTEC), 2‐15 Natsushima‐cho, Yokosuka, 237‐0061 Japan
3Astromaterials Research and Exploration Science, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas, 77058 USA
Published by arrangement with John Wiley & Sons

In order to establish kinetic expressions for Raman spectroscopic parameters of organic matter in chondritic meteorites with heating, a series of heating experiments (at 600–900 °C for 3–48 h) of the Murchison (CM2) meteorite was conducted. For comparison, several carbonaceous chondrites with various metamorphic degrees—Allende (CV3.2), Moss (CO3.6), Yamato (Y‐) 793321 (heated CM2), and Tagish Lake (ungrouped C2)—were also analyzed by the Raman spectrometer. Changes in the full width at half maximum of the D1 band (ΓD) of heated Murchison correlated well with temperature and time, and showed similar trends of chondrites with various metamorphic degrees. We obtained the kinetic expressions for the changes in ΓD by heating to estimate the time–temperature history of thermally metamorphosed type 3 chondrites and heated CM chondrites. Our results may also be useful for asteroids which are the targets of Hayabusa2 and OSIRIS‐REx missions.

Genetics, Age and Crystallization History of Group IIC Iron Meteorites

1Hope A.Tornabene,1Connor D.Hilton,1Katherine R.Bermingham,1Richard D.Ash,1Richard J.Walker
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2020.07.036]
1Department of Geology, University of Maryland, College Park, Maryland, 20742, USA
Copyright Elsevie

The eight iron meteorites currently classified as belonging to the IIC group were characterized with respect to the compositions of 21 siderophile elements. Several of these meteorites were also characterized for mass independent isotopic compositions of Mo, Ru and W. Chemical and isotopic data for one, Wiley, indicate that it is not a IIC iron meteorite and should be reclassified as ungrouped. The remaining seven IIC iron meteorites exhibit broadly similar bulk chemical and isotopic characteristics, consistent with an origin from a common parent body. Variations in highly siderophile element (HSE) abundances among the members of the group can be well accounted for by a fractional crystallization model with all the meteorites crystallizing between ∼10 and ∼26% of the original melt, assuming initial S and P concentrations of 8 wt.% and 2 wt.%, respectively. Abundances of HSE estimated for the parental melt suggest a composition with chondritic relative abundances of HSE ∼6 times higher than in bulk carbonaceous chondrites, consistent with the IIC irons sampling a parent body core comprising ∼17% of the mass of the body.

Radiogenic 182W abundances of two group IIC irons, corrected for a nucleosynthetic component, indicate a metal-silicate segregation age of 3.2 ± 0.5 Myr subsequent to the formation of Calcium-Aluminum-rich Inclusions (CAI). When this age is coupled with thermal modeling, and assumptions about the Hf/W of precursor materials, a parent body accretion age of 1.4 ± 0.5 Myr (post-CAI) is obtained.

The IIC irons and Wiley have 100Ru mass independent “genetic” isotopic compositions that are identical to other irons with so-called carbonaceous chondrite (CC) type genetic affinities, but enrichments in 94,95,97Mo and 183W that indicate greater s-process deficits relative to most known CC iron meteorites. If the IIC irons and Wiley are of the CC type, this indicates variable s-process deficits within the CC reservoir, similar to the s-process variability within the NC reservoir observed for iron meteorites. Nucleosynthetic models indicate that Mo and 183W s-process variability should correlate with Ru isotopic variability, which is not observed. This may indicate the IIC irons and Wiley experienced selective thermal processing of nucleosynthetic carriers, or are genetically distinct from the CC and NC precursor materials.