Caleta el Cobre 022 Martian meteorite: Increasing nakhlite diversity

1L.Krämer-Rugiu (>10)
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13534]
1Aix Marseille University, CNRS, Coll France, IRD, INRAE, CEREGE, Aix‐en‐Provence, France
Published by arrangement with John Wiley & Sons

Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine. Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core. Low‐Ca pyroxene is found adjacent to olivine. Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvöspinel. Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica. CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (45.1 vol% of olivine) and mesostasis. This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1.215 ± 0.067 Ga. Its ejection age of 11.8 ± 1.8 Ma is similar to other nakhlites. CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content. CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase. Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust. With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites.

Model for asteroid regolith to guide simulant development

1Philip T.Metzger,2Daniel T.Britt
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2020.113904]
1Florida Space Institute, University of Central Florida, Orlando, Florida, USA
2Department of Physics, University of Central Florida, Orlando, Florida, USA
Copyright Elsevier

When creating asteroid regolith simulant, it is necessary to have a model of asteroid regolith to guide and to evaluate the simulant. We created a model through evaluation and synthesis of the available data sets including (1) the returned sample from Itokawa by the Hayabusa spacecraft, (2) imagery from the Hayabusa and NEAR spacecraft visiting Itokawa and Eros, respectively, (3) thermal infrared observations from asteroids, (4) the texture of meteorite regolith breccias, and (5) observations and modeling of the ejecta clouds from disrupted asteroids. Comparison of the Hayabusa returned sample with other data sets suggest the surficial material in the smooth regions of asteroids is dissimilar to the bulk regolith, probably due to removal of fines by photoionization and solar wind interaction or by preferential migration of mid-sized particles into the smooth terrain. We found deep challenges interpreting and applying the thermal infrared data so we were unable to use those observations in the model. Texture of regolith breccias do not agree with other data sets, suggesting the source regolith on Vesta was coarser than typical asteroid regolith. The observations of disrupted asteroids present a coherent picture of asteroid bulk regolith in collisional equilibrium, unlike lunar regolith, HED textures, and the Itokawa returned sample. The model we adopt consists of power laws for the bulk regolith in unspecified terrain (differential power index −3.5, representing equilibrium), and the surficial regolith in smooth terrain (differential power index −2.5, representing disequilibrium). Available data do not provide adequate constraints on maximum and minimum particle sizes for these power laws, so the model treats them as user-selectable parameters for the simulant.