Shock‐induced formation of wüstite and fayalite in a magnetite‐quartz target rock

1,2Leonard F. Henrichs,2Agnes Kontny,2Boris Reznik,3Uta Gerhards,4Jörg Göttlicher,2Tim Genssle,2Frank Schilling
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13422]
1Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann‐von‐Helmholtz‐Platz 1, 76344 Eggenstein‐Leopoldshafen, Germany
2Karlsruhe Institute of Technology, Institute of Applied Geosciences, Adenauerring 20, 76131 Karlsruhe, Germany
3Karlsruhe Institute of Technology, Institute for Micro Process Engineering, Hermann‐von‐Helmholtz‐Platz 1, 76344 Eggenstein‐Leopoldshafen, Germany
4Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation (IPS), Hermann‐von‐Helmholtz‐Platz 1, 76344 Eggenstein‐Leopoldshafen, Germany
Published by arrangement with John Wiley & Sons

Projectile–target interactions as a result of a large bolide impact are important issues, as abundant extraterrestrial material has been delivered to the Earth throughout its history. Here, we report results of shock‐recovery experiments with a magnetite‐quartz target rock positioned in an ARMCO iron container. Petrography, synchrotron‐assisted X‐ray powder diffraction, and micro‐chemical analysis confirm the appearance of wüstite, fayalite, and iron in targets subjected to 30 GPa. The newly formed mineral phases occur along shock veins and melt pockets within the magnetite‐quartz aggregates, as well as along intergranular fractures. We suggest that iron melt formed locally at the contact between ARMCO container and target, and intruded the sample causing melt corrosion at the rims of intensely fractured magnetite and quartz. The strongly reducing iron melt, in the form of μm‐sized droplets, caused mainly a diffusion rim of wüstite with minor melt corrosion around magnetite. In contact with quartz, iron reacted to form an iron‐enriched silicate melt, from which fayalite crystallized rapidly as dendritic grains. The temperatures required for these transformations are estimated between 1200 and 1600 °C, indicating extreme local temperature spikes during the 30 GPa shock pressure experiments.

Unconfined shock experiments: A pilot study into the shock‐induced melting and devolatilization of calcite

1Friedrich Hörz,2Mark J. Cintala,1Kathie L. Thomas‐Keprta,1Daniel K. Ross,1Simon J. Clemett
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13424]
1Jacobs‐JETS, 2224 Bay Area Boulevard, Houston, Texas, 77058 USA
2Code XI3, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas, 77058 USA
Published by arrangement with John Wiley & Sons

We shocked calcite in an unconfined environment by launching small marble cylinders at 0.8–5.5 km s−1 into aluminum or copper plates, producing shock stresses between 5 and 79 GPa. The resulting 5–20 mm craters contained intimately mixed clastic and molten projectile residues over the entire pressure range, with melting commencing already at 5 GPa. Stoichiometrically pure calcite melts were not observed as all melts contained target metal. Some of these residues were distinctly depleted in CO2 and some contained even tiny CaO crystals, thus illustrating partial to complete loss of CO2. We interpret a thin seam of finely crystalline calcite to be the product of back reactions between CaO and CO2. The amount of carbonate residue in these craters, especially those at low velocities (<2 km s−1), is dramatically less than that of silicate impactors in similar cratering experiments, and we suggest that this is due to substantial outgassing of CO2. Similarly, the volume of carbonate melts relative to the volume of limestone or dolomite in many terrestrial crater structures seems insignificant as well, as is the volume of carbonate melt compared to the volume of impact melts derived from silicates. These volume considerations suggest that volatilization of CO2 is the dominant process in carbonate‐containing targets. Because we have difficulties in explaining naturally occurring calcite melts by shock processes in dolomite‐dominated targets, we speculate—essentially via process of elimination—that such carbonate melt blebs might be condensation products from an impact‐produced vapor cloud.

Insights into the formation of silica‐rich achondrites from impact melts in Rumuruti‐type chondrites

1,2N. G. Lunning,3A. Bischoff,2J. Gross,3M. Patzek,1C. M. Corrigan,1T. J. McCoy
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13430]
1Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560‐0119 USA
2Rutgers, Department of Earth and Planetary Sciences, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey, 08854‐8066 USA
3Institut für Planetologie, Westfälische Wilhelms‐Universität Münster, Wilhelm‐Klemm‐Str. 10, D‐48149 Münster, Germany
Published by arrangement with John Wiley & Sons

Ancient, SiO2‐rich achondrites have previously been proposed to have formed by disequilibrium partial melting of chondrites. Here, we test the alternative hypothesis that these achondrites formed by fractional crystallization of impact melts of Rumuruti (R) chondrites. We identified two new melt clasts in R chondrites, one in Pecora Escarpment (PCA) 91241 and one in LaPaz Icefield (LAP) 031275. We analyzed major, minor, and trace element concentrations, as well as oxygen isotopes, of these two clasts and a third one that had been previously recognized (Bischoff et al. 2011) as an impact melt in Dar al Gani (DaG) 013. The melt clast in PCA 91241 is an R chondrite impact melt closely resembling the one previously recognized in DaG 013. The melt clast in LAP 031275 has an L chondrite provenance. We show that SiO2‐rich melts could form from the mesostases of R chondrite impact melts. However, their CI‐normalized rare earth element patterns are flat, whereas those of ancient SiO2‐rich achondrites (Day et al. 2012; Srinivasan et al. 2018) and those of disequilibrium partial melts of chondrites (Feldstein et al. 2001) have positive Eu anomalies from preferential melting of plagioclase. Thus, we conclude that ancient SiO2‐rich achondrites were probably formed by disequilibrium partial melting (due to an internal heat source on their parent bodies), rather than from impact melts.

Origin of Al-rich chondrules in CV chondrites: Incorporation of diverse refractory components into the ferromagnesian chondrule-forming region

1,2Mingming Zhang,1,2Yangting Lin,3Guoqiang Tang,3Yu Liu,4Ingo Leya
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2019.12.011]
1Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2University of Chinese Academy of Sciences, Beijing100049, China
3State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
4Physical Institute, Space Sciences and Planetology, University of Bern, 3012 Bern, Switzerland
Copyright Elsevier

Aluminum-rich (Al2O3 > 10 wt%) chondrules (ARCs) are important chondritic components that petrologically link two other major chondritic components, ferromagnesian chondrules (FMCs) and calcium-aluminum-rich inclusions (CAIs), which formed in different regions of the protoplanetary disk. They are closely related to FMCs as indicated by their similar igneous textures, mineral assemblages, and Al-Mg isotope systematics; meanwhile, they have genetic relationship with CAIs as indicated by their distinctly Al2O3-rich compositions and occasional occurrences of relict CAI minerals. In order to further understand their formation mechanism and genetic relationships to FMCs and CAIs, nine ARCs and three ARC-related objects from Allende (CV3 oxidized), Leoville (CV3 reduced), and the ungroup Ningqiang carbonaceous chondrites were studied for petrology, mineralogy, bulk compositions, rare earth element (REE) abundances, and in situ oxygen isotopic compositions. Our results suggest that (i) ARCs crystallized from incompletely molten droplets with crystallization sequences mainly determined based on their bulk compositions. Projection of their bulk compositions onto the forsterite-saturated tridymite-diopside-spinel diagram allows us to classify them into Al-rich [Sp], Al-rich [En], and Al-rich [Plag]; (ii) ARC precursors are mixtures of refractory materials and the precursors of FMCs, in which the refractory materials have diverse sources rather than a single type of CAI/AOA (amoeboid olivine aggregate); this is inferred from the bulk compositions, relict minerals (both coarse- and fine-grained spinel, olivine, and Al-Ti-diopside), and various CAI-like REE patterns (unfractionated Group I/ III and highly fractionated Group II/ II-like) of ARCs. The source include AOAs and igneous Type B/C CAIs; (iii) ARCs were melted in the FMC-forming region, possibly by the same heating mechanism or during the same transient heating event, which is consistent with the similar oxygen isotopic compositions of their phenocrysts (Δ17O = -5.2 ± 1.7‰, 2SD). Thus, we consider that ARCs formed by melting of mixtures of diverse refractory components with the FMC precursors in the FMC-forming region.

The Pb isotope evolution of Bulk Silicate Earth: constraints from its accretion and early differentiation history

1Alessandro Maltese,1,2Klaus Mezger
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2019.12.021]
1Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
2Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
Copyright Elsevier

Constraining the evolution of Pb isotopes in the bulk silicate Earth (BSE) is hampered due to the lack of a direct determination of Earth’s U/Pb and initial Pb isotope composition. All estimates of these parameters are strongly model dependent and most Pb evolution models start with a meteoritic source, i.e., the primordial Pb composition determined in troilite from the Canyon Diablo iron meteorite. During the condensation of the elements in the solar nebula, accretion of the Earth, and its subsequent chemical evolution, the U/Pb was modified. Different models make different assumptions about the timing and extent of this U-Pb fractionation during Earth’s chemical evolution that cannot always be related to known global geological processes at the time of this modification. This study explores geochemical constraints that can be related to known geological processes to derive an internally consistent model for the evolution of the U-Th-Pb systematics of the silicate Earth.

Lead is chalcophile, moderately volatile, and as a result strongly depleted in the BSE compared to primitive meteorites. Any process affecting the abundance and isotope composition of Pb in Earth throughout its early history has to be consistent with the abundance of elements with similar chemical and physical properties in the same reservoir. The abundances of refractory to moderately and highly volatile elements in the BSE imply that the proto Earth was highly depleted in volatile elements and therefore evolved with a very high U/Pb (238U/204Pb = µ ≥100) prior to collision with the Moon-forming giant impactor. This impactor had close to chondritic abundances of moderately to highly volatile elements and delivered most of Earth’s volatile elements, including the Pb budget. Addition of this volatile rich component caused oxidation of Earth’s mantle and allowed effective transfer of Pb into the core via sulfide melt segregation. Sequestration of Pb into the core therefore accounts for the high µBSE, which has affected ca. 53 % of Earth’s Pb budget. In order to account for the present-day Pb isotope composition of BSE, the giant impact must have occurred at 69 ±10 Myr after the beginning of the solar system. Using this point in time, a model-derived µ-value, and the corresponding initial Pb isotope composition of BSE, a single stage Pb isotope evolution curve can be derived. The result is a model evolution curve for BSE in 208Pb-207Pb-206Pb-204Pb-isotope space that is fully consistent with geochemical constraints on Earth’s accretionary sequence and differentiation history. This Pb-evolution model may act as a reference frame to trace the silicate Earth’s differentiation into crust and mantle reservoirs, similar to the CHUR reference line used for other radio-isotope systems. It also highlights the long-standing Th/U paradox of the ancient Earth.

Hydrogen isotopic composition of CI- and CM-like clasts from meteorite breccias – sampling unknown sources of carbonaceous chondrite materials

1Markus Patzek,2Peter Hoppe,1Addi Bischoff,3Robbin Visser,3Timm John
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2019.12.017]
1Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany
2Max Planck Institute for Chemistry, Particle Chemistry Department, P.O. Box 3060, D-55020 Mainz, Germany
3Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstr. 74-100, D-12249 Berlin
Copyright Elsevier

Volatile-rich, CI- and CM-like clasts occur in different brecciated achondrite and chondrite groups. The CI-like clasts in HEDs, polymict ureilites, as well as ordinary, CR, and CB chondrites have a similar mineralogy, indicating a similar alteration history. However, when viewed in detail, their mineral chemistry shows some minor differences between the clasts from different meteorite groups. For CM-like clasts found in HED meteorites, the clasts are, based on their mineralogy, clearly fragments of CM chondrites. To be able to decipher whether CI- (or CM-)like clasts from different meteorite groups are related to certain meteorite classes known to contain volatiles, we obtained D/H ratios of several clasts from the meteorite groups mentioned above and compared them with those of CI and CM chondrites as well as to unique carbonaceous chondrites such as Bells, Essebi, and Tagish Lake. Considering the δD-values, CM-like clasts in HEDs span a similar range compared to bulk values of CM chondrites, further indicating that CM-like clasts are fragments of CM chondrites. For CI-like clasts a clear distinction can be made: While CI-like clasts in HEDs and ordinary chondrites show a very similar range in their δD-signatures compared to “common” CI chondrites, meaning that these clasts are likely related to CI chondrites, the CI-like clasts in polymict ureilites are enriched in D up to 3000 ‰; a similarly high enrichment is found for the CI-like clasts in CR chondrites. Thus, although the CI-like clasts in ureilites and CR chondrites likely experienced similar alteration histories as the CI-like clasts found in the other meteorite types, these clasts probably formed in a different region than the CI chondrites and, thus, are more accurately referred to as C1 clasts. Overall, the existence and isotopic signatures of the C1 clasts in several meteorite groups proves the existence of additional primitive, volatile-rich material in the (early) Solar System besides the matter we study as the CI, CM, and CR chondrites. This material was distributed throughout the Solar System very early and might have played an important role for the volatile inventory of the terrestrial planets.