Formation of disk- and bowl-shaped igneous Ca,Al-rich inclusions: Constraints from their morphology, textures, mineralogy and modelling

1C.Lorenz,1M.Ivanova,2A.Krot,3V.Shuvalov
Geochemistry (Chemie der Erde) (In Press) Link to Article [https://doi.org/10.1016/j.chemer.2019.07.005]
1Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin St. 19, Moscow, 119991, Russia
2University of Hawai‘i at Mānoa, 1680 East-West Road, Honolulu, HI, 96822, USA
3Institute for Dynamics of Geosphere, Russian Academy of Sciences, Moscow, Russia
Copyright Elsevier

Calcium-aluminum-rich inclusions (CAIs) are the oldest Solar System solids dated that formed by evaporation, condensation, aggregation and, sometimes, melting processes near the protoSun, and were subsequently dispersed throughout the protoplanetary disk by still poorly-understood mechanism(s). Here we report on the discovery of disk- and bowl-shaped centimeter-sized igneous CAIs in CV (Vigarano type) carbonaceous chondrites. Igneous CAIs of these shapes are not expected for crystallization of melt droplets in a low gravity field of the protoplanetary disk. We have tested several models for the formation of disk- and bowl-shaped igneous CAIs including: collision, aerodynamic deformation and shock flattening. We conclude that these CAIs resulted from aerodynamic deformation of CAI-like melt droplets and propose the following multistage formation scenario: (1) nearly complete melting and acceleration of CAIs at <30 km/s in the CAI-forming region having approximately solar dust/gas ratio; (2) aerodynamic deformation, ablation, deceleration, solidification at ˜30–40 K/min, Wark-Lovering rims formation, and deceleration of the CAIs entering a dust-rich inner disk wall; (3) radial drift of the solidified deformed CAIs towards the Sun; (4) heating and partial melting of the deformed CAIs by solar radiation that preserve their morphology; (5) cooling and crystallization of CAIs at ˜2 K/h; (5) radial transport of CAIs from their formation region to the outer disk.

MINERALOGY, PETROGRAPHY, AND OXYGEN AND ALUMINUM-MAGNESIUM ISOTOPE SYSTEMATICS OF GROSSITE-BEARING REFRACTORY INCLUSIONS

1,2,3Alexander N.Krot,1Kazuhide Nagashima,4Steven B.Simon,5Chi Ma,6Harold C.Connolly Jr.,1Gary R.Huss,7,8,9Andrew M.Davis,3MartinBizzarro
Geochemistry (Chemie der Erde)(In Press) Link to Article [https://doi.org/10.1016/j.chemer.2019.08.001]
1School of Ocean, Earth Science and Technology, Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, USA
2Geoscience Institute/Mineralogy, Goethe University Frankfurt, Germany
3Centre for Star and Planet Formation, University of Copenhagen, Denmark
4Institute of Meteoritics, University of New Mexico, USA
5Division of Geological and Planetary Sciences, California Institute of Technology, USA
6Department of Geology, School of Earth and Environment, Rowan University, USA
7Department of the Geophysical Sciences, The University of Chicago, USA
8Enrico Fermi Institute, The University of Chicago, USA
9Chicago Center for Cosmochemistry, USA
Copyright Elsevier

Grossite (CaAl4O7) is one of the one of the first minerals predicted to condense from a gas of solar composition, and therefore could have recorded isotopic compositions of reservoirs during the earliest stages of the Solar System evolution. Grossite-bearing Ca,Al-rich inclusions (CAIs) are a relatively rare type of refractory inclusions in most carbonaceous chondrite groups, except CHs, where they are dominant. We report new and summarize the existing data on the mineralogy, petrography, oxygen and aluminum-magnesium isotope systematics of grossite-bearing CAIs from the CR, CH, CB, CM, CO, and CV carbonaceous chondrites. Grossite-bearing CAIs from unmetamorphosed (petrologic type 2―3.0) carbonaceous chondrites preserved evidence for heterogeneous distribution of 26Al in the protoplanetary disk. The inferred initial 26Al/27Al ratio [(26Al/27Al)0] in grossite-bearing CAIs is generally bimodal, ˜0 and ˜5×10‒5; the intermediate values are rare. CH and CB chondrites are the only groups where vast majority of grossite-bearing CAIs lacks resolvable excess of radiogenic 26Mg. Grossite-bearing CAIs with approximately the canonical (26Al/27Al)0 of ˜5×10‒5 are dominant in other chondrite groups. Most grossite-bearing CAIs in type 2‒3.0 carbonaceous chondrites have uniform solar-like O-isotope compositions (Δ17O ˜ ‒24±2‰). Grossite-bearing CAIs surrounded by Wark-Lovering rims in CH chondrites are also isotopically uniform, but show a large range of Δ17O, from ˜ ‒40‰ to ˜ ‒5‰, suggesting an early generation of gaseous reservoirs with different oxygen-isotope compositions in the protoplanetary disk. Igneous grossite-bearing CAIs surrounded by igneous rims of ±melilite, Al-diopside, and Ca-rich forsterite, found only in CB and CH chondrites, have uniform 16O-depleted compositions (Δ17O ˜ ‒14‰ to ‒5‰). These CAIs appear to have experienced complete melting and incomplete O-isotope exchange with a 16O-poor (Δ17O ˜ ‒2‰) gas in the CB impact plume generated about 5 Ma after CV CAIs. Grossite-bearing CAIs in metamorphosed (petrologic type >3.0) CO and CV chondrites have heterogeneous Δ17O resulted from mineralogically-controlled isotope exchange with a 16O-poor (Δ17O ˜ ‒2 to 0‰) aqueous fluid on the CO and CV parent asteroids 3‒5 Ma after CV CAIs. This exchange affected grossite, krotite, melilite, and perovskite; corundum, hibonite, spinel, diopside, forsterite, and enstatite preserved their initial O-isotope compositions. The internal 26Al-26Mg isochrons in grossite-bearing CAIs from weakly-metamorphosed CO and CV chondrites were not disturbed during this oxygen-isotope exchange.

HCCJr is grateful to Klaus Keil for all his sound profession counsel and collegial friendship over the years. He has always been willing to talk and has the generous nature of listening and sharing his thoughts freely and constructively. Professor Klaus Keil has been a mentor to and played a key role in the careers of three of the authors of this paper (ANK, KN, and GRH). He has also influenced the careers of the other authors and most of the people who have worked on meteorites over the past 50+ years. We therefore dedicate this paper to Professor Keil and present it in this Special Issue of Geochemistry.

MINERALOGY, PETROGRAPHY, AND OXYGEN ISOTOPIC COMPOSITIONS OF ULTRAREFRACTORY INCLUSIONS FROM CARBONACEOUS CHONDRITES

1,2A.N.Krot,2C.Ma,1K.Nagashima,4,5,6A.M.Davis,3J.R.Beckett,7S.B.Simon,8M.Komatsu,9T.J.Fagan,2F.Brenker,10M.A.Ivanova,11A.Bischoff
Geochemistry (Chemie der Erde) (in Press) Link to Article [https://doi.org/10.1016/j.chemer.2019.07.001]
1Hawai‘i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, 1680 East-West Road, Honolulu, HI 96822, USA
2Geoscience Institute, Goethe University, 60438 Frankfurt am Main, Germany
3Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena CA 91125, USA
4Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637, USA
5Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
6Chicago Center for Cosmochemistry, Chicago, IL 60637, USA
7Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131, USA
8The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193 Japan
9Earth Sciences Department, Waseda University, Shinjuku-ku, Tokyo 169-8050, Japan
10Vernadsky Institute of Geochemistry of Russian Academy of Sciences, Kosygin St. 19, Moscow 119991, Russia
11Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
Copyright Elsevier

We report on the mineralogy, petrography, and in situ oxygen isotopic composition of twenty-five ultrarefractory calcium-aluminum-rich inclusions (UR CAIs) in CM2, CR2, CH3.0, CV3.1―3.6, CO3.0―3.6, MAC 88107 (CO3.1-like), and Acfer 094 (C3.0 ungrouped) carbonaceous chondrites. The UR CAIs studied are typically small, < 100 µm in size, and contain, sometimes dominated by, Zr-, Sc-, and Y-rich minerals, including allendeite (Sc4Zr3O12), and an unnamed ((Ti,Mg,Sc,Al)3O5) mineral, davisite (CaScAlSiO6), eringaite (Ca3(Sc,Y,Ti)2Si3O12), kangite ((Sc,Ti,Al,Zr,Mg,Ca,□)2O3), lakargiite (CaZrO3), warkite (Ca2Sc6Al6O20), panguite ((Ti,Al,Sc,Mg,Zr,Ca)1.8O3), Y-rich perovskite ((Ca,Y)TiO3), tazheranite ((Zr,Ti,Ca)O2―x), thortveitite (Sc2Si2O7), zirconolite (orthorhombic CaZrTi2O7), and zirkelite (cubic CaZrTi2O7). These minerals are often associated with 50―200 nm-sized nuggets of platinum group elements. The UR CAIs occur as: (i) individual irregularly-shaped, nodular-like inclusions; (ii) constituents of unmelted refractory inclusions – amoeboid olivine aggregates (AOAs) and Fluffy Type A CAIs; (iii) relict inclusions in coarse-grained igneous CAIs (forsterite-bearing Type Bs and compact Type As); and (iv) relict inclusions in chondrules. Most UR CAIs, except for relict inclusions, are surrounded by single or multilayered Wark-Lovering rims composed of Sc-rich clinopyroxene, ±eringaite, Al-diopside, and ±forsterite. Most of UR CAIs in carbonaceous chondrites of petrologic types 2―3.0 are uniformly 16O-rich (Δ17O ˜ ―23‰), except for one CH UR CAI, which is uniformly 16O-depleted (Δ 17O ˜ ―5‰). Two UR CAIs in Murchison have heterogeneous Δ17O. These include: an intergrowth of corundum (˜ ‒24‰) and (Ti,Mg,Sc,Al)3O5 (˜ 0‰), and a thortveitite-bearing CAI (˜ ‒20 to ˜ ‒5‰); the latter apparently experienced incomplete melting during chondrule formation. In contrast, most UR CAIs in metamorphosed chondrites are isotopically heterogeneous (Δ17O ranges from ˜ ―23‰ to ˜ ―2‰), with Zr- and Sc-rich oxides and silicates, melilite and perovskite being 16O-depleted to various degrees relative to uniformly 16O-rich (Δ17O ˜ ―23‰) hibonite, spinel, Al-diopside, and forsterite. We conclude that UR CAIs formed by evaporation/condensation, aggregation and, in some cases, melting processes in a 16O-rich gas of approximately solar composition in the CAI-forming region(s), most likely near the protoSun, and were subsequently dispersed throughout the protoplanetary disk. One of the CH UR CAIs formed in an 16O-depleted gaseous reservoir providing an evidence for large variations in Δ17O of the nebular gas in the CH CAIs-forming region. Subsequently some UR CAIs experienced oxygen isotopic exchange during melting in 16O-depleted regions of the disk, most likely during the epoch of chondrule formation. In addition, UR CAIs in metamorphosed CO and CV chondrites, and, possibly, the corundum-(Ti,Mg,Sc,Al)3O5 intergrowth in Murchison experienced O-isotope exchange with aqueous fluids on the CO, CV, and CM chondrite parent asteroids. Thus, both nebular and planetary exchange with 16O-depleted reservoirs occurred.