Age and origin of IIE iron meteorites inferred from Hf-W chronology

1,2Thomas S.Kruijer,2ThorstenKleine
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2019.07.039]
1Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Ger many
2Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
Copyright Elsevier

Non-magmatic iron meteorites, including the IIE group, can provide important insights into the history of metal-silicate differentiation and collisions on planetesimals. To better constrain the evolution of metal segregation and impacts on the IIE parent body, W isotopic data are reported for 10 IIE iron meteorites and a metal vein from the Portales Valley H6 chondrite. In addition, Pt isotopic data were obtained to quantify cosmic ray-induced neutron capture effects on W isotopes. After correction for these effects, the IIE iron meteorites exhibit variable pre-exposure 182W compositions, translating into Hf-W model age clusters of ∼4-5 million years (Ma), ∼10 Ma, ∼15 Ma, and ∼27 Ma after CAI formation. These distinct 182W clusters likely represent samples from several discrete metallic melt pools on the IIE parent asteroid. The earliest metal segregation event at ∼4-5 Ma was likely facilitated by 26Al decay as an internal heat source. By contrast, the younger Hf-W model ages may not be chronologically meaningful, and probably reflect the effects of secondary mixing and re-equilibration of metal and silicates, likely facilitated by impacts on the IIE parent body. Thus, contrary to prior work, the Hf-W systematics of IIE iron meteorites do not require a protracted history of metal-silicate separation on the IIE parent body. Instead the results of this study are fully consistent with a single partial metal-silicate differentiation event driven by endogenic heating at ∼4-5 Ma, followed by one or multiple impact events causing mixing and re-equilibration of metal and silicates at a later stage. The exact timing of these impact event(s) remains poorly constrained, but they most likely occurred in the first few tens of Ma of Solar System history.

Mantle source to near-surface emplacement of enriched and intermediate poikilitic shergottites in Mars

1Rachel R.Rahib,1Arya Udry,2Geoffrey H.Howarth,3Juliane Gross,4Marine Paquet,1Logan M.Combs,5Dara L.Laczniak,4James M.D.Day
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2019.07.034]
1Department of Geoscience, University of Nevada Las Vegas, Las Vegas NV 89154, USA
2Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
3Department of Earth and Planetary Sciences, Rutgers University, Piscataway NJ 08854, USA
4Scripps Institution of Oceanography, University of California San Diego, La Jolla CA 92093, USA
5Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
Copyright Elsevier

Poikilitic shergottites make up >20% of the current martian meteorite collection, with a total of 27 samples. These meteorites are intrusive gabbroic to lherzolitic rocks and represent igneous materials recording important processes in the martian crust. To further constrain petrogenetic relationships amongst enriched and intermediate poikilitic shergottites, we studied a comprehensive suite of poikilitic shergottites — including four newly recovered samples (Northwest Africa [NWA] 11065, NWA 11043, NWA 10961, NWA 10618) — using bulk rock major- and trace-element compositions, mineral major-element compositions, oxygen fugacity (ƒO2) values, crystallization temperatures, phosphorus maps of olivine grains, and quantitative textural analyses. The characteristic bimodal textures (poikilitic and non-poikilitic textures) of poikilitic shergottites record evolving magmatic conditions at different stages of crystallization. Higher temperatures and more reducing conditions during early-stage crystallization are recorded in the poikilitic textures, while lower temperature and more oxidizing conditions are recorded in the non-poikilitic textures during late-stage crystallization. Oxygen fugacity estimates relative to the quartz-fayalite-magnetite (QFM) buffer for early-stage olivine-pyroxene-spinel assemblages of enriched and intermediate poikilitic shergottites suggest decoupling of ƒO2 and the degree of light rare earth element (LREE)-enrichment (i.e., [La/Yb]CI). An increase in ƒO2 exceeding 1 log unit from poikilitic to non-poikilitic textures implies degassing, with possible auto-oxidation, and/or crustal contamination. Quantitative textural analyses support the emplacement of both enriched and intermediate poikilitic shergottites as various shallow intrusive bodies, as well as a potentially widespread emplacement mechanism responsible for a major lithology of the martian crust. In addition, early assemblages (i.e., pyroxene oikocrysts) of all the poikilitic shergottites likely formed close to the crust-mantle boundary, implying a possible widespread presence of magma staging chambers at these depths. Fractional crystallization and magma storage in these chambers could have possibly resulted in all of the different enriched and intermediate shergottites that have been analyzed from Mars.