Origin of the metamorphosed clasts in the CV3 carbonaceous chondrite breccias of Graves Nunataks 06101, Vigarano, Roberts Massif 04143, and Yamato‐86009

Kaori JOGO1, Motoo ITO2, Shigeru WAKITA3, Sachio KOBAYASHI2, and Jong Ik LEE1
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13272]
1Division of Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990,South Korea
2Kochi Institute for Core Sample Research, JAMSTEC B200 Monobe, Nankoku, Kochi 783-8502, Japan
3Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka,Tokyo 181-8588, Japan
Published by arrangement with John Wiley & Sons

We observed metamorphosed clasts in the CV3 chondrite breccias Graves Nunataks 06101, Vigarano, Roberts Massif 04143, and Yamato‐86009. These clasts are coarse‐grained polymineralic rocks composed of Ca‐bearing ferroan olivine (Fa24–40, up to 0.6 wt% CaO), diopside (Fs7–12Wo44–50), plagioclase (An52–75), Cr‐spinel (Cr/[Cr + Al] = 0.4, Fe/[Fe + Mg] = 0.7), sulfide and rare grains of Fe‐Ni metal, phosphate, and Ca‐poor pyroxene (Fs24Wo4). Most clasts have triple junctions between silicate grains. The rare earth element (REE) abundances are high in diopside (REE ~3.80–13.83 × CI) and plagioclase (Eu ~12.31–14.67 × CI) but are low in olivine (REE ~0.01–1.44 × CI) and spinel (REE ~0.25–0.49 × CI). These REE abundances are different from those of metamorphosed chondrites, primitive achondrites, and achondrites, suggesting that the clasts are not fragments of these meteorites. Similar mineralogical characteristics of the clasts with those in the Mokoia and Yamato‐86009 breccias (Jogo et al. 2012) suggest that the clasts observed in this study would also form inside the CV3 chondrite parent body. Thermal modeling suggests that in order to reach the metamorphosed temperatures of the clasts of >800 °C, the clast parent body should have accreted by ~2.5–2.6 Ma after CAIs formation. The consistency of the accretion age of the clast parent body and the CV3 chondrule formation age suggests that the clasts and CV3 chondrites could be originated from the same parent body with a peak temperature of 800–1100 °C. If the body has a peak temperature of >1100 °C, the accretion age of the body becomes older than the CV3 chondrule formation age and multiple CV3 parent bodies are likely.

Libyan Desert Glass area in western Egypt: Shocked quartz in bedrock points to a possible deeply eroded impact structure in the region

Christian KOEBERL1,2 and Ludovic FERRIERE1
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13250]
1Natural History Museum, Burgring 7, A-1010 Vienna, Austria
2Department of Lithospheric Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
Published by arrangement with John Wiley & Sons

ibyan Desert Glass (LDG) is an enigmatic natural glass, about 28.5 million years old, which occurs on the floor of corridors between sand dunes of the southwestern corner of the Great Sand Sea in western Egypt, near the Libyan border. The glass occurs as centimeter‐ to decimeter‐sized, irregularly shaped, and strongly wind‐eroded pieces. The origin of the LDG has been the subject of much debate since its discovery, and a variety of exotic processes were suggested, including a hydrothermal sol‐gel process or a lunar volcanic source. However, evidence of an impact origin of these glasses included the presence of schlieren and partly or completely digested minerals, such as lechatelierite, baddeleyite (a high‐T breakdown product of zircon), and the presence of a meteoritic component in some of the glass samples. The source material of the glass remains an open question. Geochemical data indicate that neither the local sands nor sandstones from various sources in the region are good candidates to be the sole precursors of the LDG. No detailed studies of all local rocks exist, though. There are some chemical and isotopic similarity to rocks from the BP and Oasis impact structures in Libya, but no further evidence for a link between these structures and LDG was found so far. These complications and the lack of a crater structure in the area of the LDG strewn field have rendered an origin by airburst‐induced melting of surface rocks as a much‐discussed alternative. About 20 years ago, a few shocked quartz‐bearing breccias (float samples) were found in the LDG strewn field. To study this question further, several basement rock outcrops in the LDG area were sampled during three expeditions in the area. Here we report on the discovery of shock‐produced planar microdeformation features, namely planar fractures (PFs), planar deformation features (PDFs), and feather features (FFs), in quartz grains from bedrock samples. Our observations show that the investigated samples were shocked to moderate pressure, of at least 16 GPa. We interpret these observations to indicate that there was a physical impact event, not just an airburst, and that the crater has been almost completely eroded since its formation.

The effect of core composition on iron isotope fractionation between planetary cores and mantles

Stephen M.Elardoa,b, Anat Shahara, Timothy D. Mockc, Corliss K. Sioa,d
Earth and Planetary Science Letters 511, 12-24 Link to Article [https://doi.org/10.1016/j.epsl.2019.02.025]
aGeophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
bDepartment of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
cDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
dNuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Copyright Elsevier

We have conducted high-pressure, high-temperature isotope exchange experiments between molten silicate and molten Fe–Si–C-alloys to constrain the effect of Si on equilibrium Fe isotope fractionation during planetary core formation. The values of <span id="MathJax-Element-1-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.200000762939453px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="Δ57″>FeMetal-Silicate at 1850 °C and 1 GPa determined by high-resolution MC-ICP-MS in this study range from <span id="MathJax-Element-2-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.200000762939453px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="−0.013±0.054‰”>‰ (2SE) to 0.072 ± 0.085‰ with 1.34–8.14 atom % Si in the alloy, respectively. These results, although not definitive on their own, are consistent with previous experimental results from our group and a model in which elements that substitute for Fe atoms in the alloy structure (i.e., Ni, S, and Si) induce a fractionation of Fe isotopes between molten silicate and molten Fe-alloys during planetary differentiation. Using in situ synchrotron X-ray diffraction data for molten Fe-rich alloys from the literature, we propose a model to explain this fractionation behavior in which impurity elements in Fe-alloys cause the nearest neighbor atomic distances to shorten, thereby stiffening metallic bonds and increasing the preference of the alloy for heavy Fe isotopes relative to the silicate melt. This fractionation results in the bulk silicate mantles of the smaller terrestrial planets and asteroids becoming isotopically light relative to chondrites, with an enrichment of heavy Fe isotopes in their cores, consistent with magmatic iron meteorite compositions. Our model predicts a bulk silicate mantle <span id="MathJax-Element-3-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.200000762939453px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="δ57″>Fe ranging from −0.01‰ to −0.12‰ for the Moon, −0.06‰ to −0.33‰ for Mars, and −0.08‰ to −0.33‰ for Vesta. Independent estimates of the <span id="MathJax-Element-4-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.200000762939453px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="δ57″>Fe of primitive mantle source regions that account for Fe isotope fractionation during partial melting agree well with these ranges for all three planetary bodies and suggest that Mars and Vesta have cores with impurity (i.e., Ni, S, Si) abundances near the low end of published ranges. Therefore, we favor a model in which core formation results in isotopically light bulk silicate mantles for the Moon, Mars, and Vesta. The processes of magma ocean crystallization, mantle partial melting, and fractional crystallization of mantle-derived melts are all likely to result in heavy Fe isotope enrichment in the melt phase, which can explain why basaltic samples from these planetary bodies have variable <span id="MathJax-Element-5-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.200000762939453px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="δ57″>Fe values consistently heavier than our bulk mantle estimates. Additionally, we find no clear evidence that Fe isotopes were fractionated to a detectable level by volatile depletion processes during or after planetary accretion, although it cannot be ruled out.

Meteorite cloudy zone formation as a quantitative indicator of paleomagnetic field intensities and cooling rates on planetesimals

Clara Maurela, Benjamin P. Weissa, James F. J. Brysonb
Earth and Planetary Science Letters 511, 12-24 Link to Article [https://doi.org/10.1016/j.epsl.2019.02.027]
aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
bDepartment of Earth Sciences, University of Cambridge, Cambridge, UK
Copyright Elsevier

Metallic microstructures in slowly-cooled iron-rich meteorites reflect the thermal and magnetic histories of their parent planetesimals. Of particular interest is the cloudy zone, a nanoscale intergrowth of Ni-rich islands within a Ni-poor matrix that forms below ∼350 °C by spinodal decomposition. The sizes of the islands have long been recognized as reflecting the low-temperature cooling rates of meteorite parent bodies. However, a model capable of providing quantitative cooling rate estimates from island sizes has been lacking. Moreover, these islands are also capable of preserving a record of the ambient magnetic field as they grew, but some of the key physical parameters required for recovering reliable paleointensity estimates from magnetic measurements of these islands have been poorly constrained. To address both of these issues, we present a numerical model of the structural and compositional evolution of the cloudy zone as a function of cooling rate and local composition. Our model produces island sizes that are consistent with present-day measured sizes. This model enables a substantial improvement in the calibration of paleointensity estimates and associated uncertainties. In particular, we can now accurately quantify the statistical uncertainty associated with the finite number of islands acquiring the magnetization and the uncertainty on their size at the time of the record. We use this new understanding to revisit paleointensities from previous pioneering paleomagnetic studies of cloudy zones. We show that these could have been overestimated by up to one order of magnitude but nevertheless still require substantial magnetic fields to have been present on their parent bodies. Our model also allows us to estimate absolute cooling rates for meteorites that cooled slower than <10,000 °C My−1. We demonstrate how these cooling rate estimates can uniquely constrain the low-temperature thermal history of meteorite parent bodies. Using the main-group pallasites as an example, we show that our results are consistent with the previously-proposed unperturbed, conductive cooling at low temperature of a ∼200-km radius main-group pallasite parent body.