Using the density of Kuiper Belt Objects to constrain their composition and formation history

1C.J.Bierson,1F.Nimmo
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2019.01.027]
1Department of Earth and Planetary Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA
Copyright Elsevier

Telescopic observations of Kuiper Belt objects have enabled bulk density determinations for 17 objects. These densities vary systematically with size, perhaps suggesting systematic variations in bulk composition. We find this trend can be explained instead by variations in porosity arising from the higher pressures and warmer temperatures in larger objects. We are able to match the density of 14 of 17 KBOs within their 2σ errors with a constant rock mass fraction of 70%, suggesting a compositionally homogeneous, rock-rich reservoir. Because early 26Al would have removed too much porosity in small (∼ 100 km) KBOs we find the minimum formation time to be 4 Myr after solar system formation. This suggests that coagulation, and not gravitational collapse, was the dominant mechanism for KBO formation, or the gas disk lingered in the outer solar system. We also use this model to make predictions for the density of Makemake, 2007 OR10, and MU69

Effects of the Isothermal Region in Protoplanetary Disks and the Protostar Irradiation on the Disk Instability Model for Giant Planet Formation

Pengfei Tang and Liping Jin
Astrophysical Journal 871, 222 Link to Article [DOI: 10.3847/1538-4357/aafb6f ]
College of Physics, Jilin University Changchun, Jilin 130012, People’s Republic of China

We construct an analytical model of gravitationally unstable protoplanetary disks consisting of three regions: the inner region where the internal dissipation dominates the heating, the intermediate region where the central protostar irradiation dominates, and the outer region where background irradiation dominates. We use this analytical model and an evolutionary numerical model of protoplanetary disks to calculate the cooling time and find out the location of the isothermal region. We investigate the effects of the isothermal region on the disk instability model for giant planet formation. We find that the fragmentation region found in previous studies is contained in the isothermal region of a disk. In this case, the cooling time criterion is not applicable for fragmentation. Therefore, the constraint on the disk instability model caused by the cooling time criterion should be relieved. The viability of the disk instability model is improved. When the isothermal region is considered, the inner boundary of the fragmentation region is extended inward to ~20 au. We also show that if the contribution of the protostar irradiation to the disk surface temperature can be included in the cooling rate, the fragmentation region defined by the cooling time criterion can be extended inward to ~26 au. We find that a disk tends to be isothermal in the region where the cooling time criterion is satisfied. We also find that at the later stage of disk instability, the inner boundary of the fragmentation region is determined by the inner boundary of the gravitationally unstable region.

Mapping the Conditions for Hydrodynamic Instability on Steady-State Accretion Models of Protoplanetary Disks

Thomas Pfeil and Hubert Klahr
Astrophysical Journal 871, 150 Link to Article [DOI: 10.3847/1538-4357/aaf962 ]
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

Hydrodynamic instabilities in disks around young stars depend on the thermodynamic stratification of the disk and on the local rate of thermal relaxation. Here, we map the spatial extent of unstable regions for the Vertical Shear Instability (VSI), the Convective Overstability (COS), and the amplification of vortices via the Subcritical Baroclinic Instability (SBI). We use steady-state accretion disk models, including stellar irradiation, accretion heating, and radiative transfer. We determine the local radial and vertical stratification and thermal relaxation rate in the disk, which depends on the stellar mass, disk mass, and mass accretion rate. We find that passive regions of disks—that is, the midplane temperature dominated by irradiation—are COS unstable about one pressure scale height above the midplane and VSI unstable at radii >10 au. Vortex amplification via SBI should operate in most parts of active and passive disks. For active parts of disks (midplane temperature determined by accretion power), COS can become active down to the midplane. The same is true for the VSI because of the vertically adiabatic stratification of an internally heated disk. If hydrodynamic instabilities or other nonideal MHD processes are able to create α-stresses (>10−5) and released accretion energy leads to internal heating of the disk, hydrodynamic instabilities are likely to operate in significant parts of the planet-forming zones in disks around young stars, driving gas accretion and flow structure formation. Thus, hydrodynamic instabilities are viable candidates to explain the rings and vortices observed with the Atacama Large Millimeter/submillimeter Array and Very Large Telescope.