Chao-Chin Yang (楊朝欽)1,2, Mordecai-Mark Mac Low3,4, and Anders Johansen1
Astrophysical Journal 868, 1 Link to Article [DOI: 10.3847/1538-4357/aae7d1]
1Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund, Sweden
2Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Box 454002, Las Vegas, NV 89154-4002, USA
3Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
4Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA
The streaming instability is a promising mechanism to drive the formation of planetesimals in protoplanetary disks. To trigger this process, it has been argued that sedimentation of solids onto the mid-plane needs to be efficient, and therefore that a quiescent gaseous environment is required. It is often suggested that dead-zone or disk-wind structure created by non-ideal magnetohydrodynamical (MHD) effects meets this requirement. However, simulations have shown that the mid-plane of a dead zone is not completely quiescent. In order to examine the concentration of solids in such an environment, we use the local-shearing-box approximation to simulate a particle-gas system with an Ohmic dead zone including mutual drag force between the gas and the solids. We systematically compare the evolution of the system with ideal or non-ideal MHD, with or without backreaction drag force from particles on gas, and with varying solid abundances. Similar to previous investigations of dead-zone dynamics, we find that particles of dimensionless stopping time
do not sediment appreciably more than those in ideal magnetorotational turbulence, resulting in a vertical scale height an order of magnitude larger than in a laminar disk. Contrary to the expectation that this should curb the formation of planetesimals, we nevertheless find that strong clumping of solids still occurs in the dead zone when solid abundances are similar to the critical value for a laminar environment. This can be explained by the weak radial diffusion of particles near the mid-plane. The results imply that the sedimentation of particles to the mid-plane is not a necessary criterion for the formation of planetesimals by the streaming instability.
. However, their compactness means a high stellar density, which can lead to strong gravitational interactions between the stars. As young stars are often initially surrounded by protoplanetary disks and later on potentially by planetary systems, the question arises to what degree these strong gravitational interactions influence planet formation and the properties of planetary systems. Here, we perform simulations of the evolution of compact high-mass clusters like Trumpler 14 and Westerlund 2 from the embedded to the gas-free phase and study the influence of stellar interactions. We concentrate on the development of the mean disk size in these environments. Our simulations show that in high-mass open clusters 80%–90% of all disks/planetary systems should be smaller than 50
just as a result of the strong stellar interactions in these environments. Already in the initial phases, three to four close flybys lead to typical disk sizes within the range of 18–27
. Afterward, the disk sizes are altered only to a small extent. Our findings agree with the recent observation that the disk sizes in the once dense environment of the Upper Scorpio OB association, NGC 2362, and h/χPersei are at least three times smaller in size than, for example, in Taurus. We conclude that the observed planetary systems in high-mass open clusters should also be on average smaller than those found around field stars; in particular, planets on wide orbits are expected to be extremely rare in such environments.